scholarly journals IoT based Real Time Traffic Monitoring System Using M/G/1 Queuing Research

Vehicular Traffic crowding is paramount worry in urban cities. The use of technologies like Intelligent Transportation systems and Internet of Things can solve the problem of traffic congestion to some extent. The paper analyses the traffic conditions on a particular urban highway using queuing theory approach. It researches on performance framework such as time for waiting and queue length. The results can provide significant analysis to predict traffic congestion during peak hours. A congestion controlling action can be generated to utilize the road capacity fully during peak hours by using these results

Author(s):  
Nouha Rida ◽  
Mohammed Ouadoud ◽  
Abderrahim Hasbi

Traffic optimization at an intersection, using real-time traffic information, presents an important focus of research into intelligent transportation systems. Several studies have proposed adaptive traffic lights control, which concentrates on determining green light length and sequence of the phases for each cycle in accordance with the real-time traffic detected. In order to minimize the waiting time at the intersection, the authors propose an intelligent traffic light using the information collected by a wireless sensors network installed in the road. The proposed algorithm is essentially based on two parameters: the waiting time in each lane and the length of its queue. The simulations show that the algorithm applied at a network of intersections improves significantly the average waiting time, queue length, fuel consumption, and CO2 emissions.


Author(s):  
S. Konyeha ◽  
E. Osa

This work proposes the adoption of Vehicular Ad-Hoc Network (VANET) into the Road Transport system of developing countries. There are myriads of challenges to road transportation in developing countries which include poor state of roads, poor maintenance of roads, road congestions amongst others. The negative impacts of these developments could be very devastating on human lives as well as the economy of the nations concerned. Intelligent Transportation Systems (ITSs) which involve the integration of modern communication and information technology into existing transportation systems for real time monitoring of traffic in order to alleviate traffic congestion, incidents, public health issues, etc. Utilizing VANET communication infrastructure will enable ITSs to improve safety of commuters on the roads and minimize traffic congestion, waiting times, fuel consumption, and emissions. The situation in the Nigerian State is considered.


2021 ◽  
pp. 335-345
Author(s):  
Zainab A. Abood ◽  
Hazeem B. Taher ◽  
Rana F. Ghani

Intelligent Transportation Systems (ITS) have been developed to improve the efficiency and safety of road transport by using new technologies for communication. Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) are a subset of ITS widely used to solve different issues associated with transportation in cities. Road traffic congestion is still the most significant problem that causes important economic and productivity damages, as well as increasing environmental effects. This paper introduces an early traffic congestion alert system in a vehicular network, using the internet of things (IoT) and fuzzy logic, for optimizing the traffic and increasing the flow. The proposed system detects critical driving conditions, or any emergency situation blocking the road, and broadcasts remote warnings to the following vehicles. Since not all vehicles are equipped with new technologies, Liquid Crystal Display (LCD) fixed on the roads displays the alert to warn the other vehicles which have neither communication nor sensors. The system was designed with Raspberry Pi 3 Model B equipped with sensors and GPS module to emulate real-world vehicles. The results and observations collected during the experiments showed that the proposed system is able to monitor the road conditions, detect the emergency situation, and broadcast a warning message to the approaching vehicles.


2018 ◽  
Vol 4 (10) ◽  
pp. 10
Author(s):  
Ankur Mishra ◽  
Aayushi Priya

Transportation or transport sector is a legal source to take or carry things from one place to another. With the passage of time, transportation faces many issues like high accidents rate, traffic congestion, traffic & carbon emissions air pollution, etc. In some cases, transportation sector faced alleviating the brutality of crash related injuries in accident. Due to such complexity, researchers integrate virtual technologies with transportation which known as Intelligent Transport System. Intelligent Transport Systems (ITS) provide transport solutions by utilizing state-of-the-art information and telecommunications technologies. It is an integrated system of people, roads and vehicles, designed to significantly contribute to improve road safety, efficiency and comfort, as well as environmental conservation through realization of smoother traffic by relieving traffic congestion. This paper aims to elucidate various aspects of ITS - it's need, the various user applications, technologies utilized and concludes by emphasizing the case study of IBM ITS.


Author(s):  
Taghi Shahgholi ◽  
Amir Sheikhahmadi ◽  
Keyhan Khamforoosh ◽  
Sadoon Azizi

AbstractIncreased number of the vehicles on the streets around the world has led to several problems including traffic congestion, emissions, and huge fuel consumption in many regions. With advances in wireless and traffic technologies, the Intelligent Transportation System (ITS) has been introduced as a viable solution for solving these problems by implementing more efficient use of the current infrastructures. In this paper, the possibility of using cellular-based Low-Power Wide-Area Network (LPWAN) communications, LTE-M and NB-IoT, for ITS applications has been investigated. LTE-M and NB-IoT are designed to provide long range, low power and low cost communication infrastructures and can be a promising option which has the potential to be employed immediately in real systems. In this paper, we have proposed an architecture to employ the LPWAN as a backhaul infrastructure for ITS and to understand the feasibility of the proposed model, two applications with low and high delay requirements have been examined: road traffic monitoring and emergency vehicle management. Then, the performance of using LTE-M and NB-IoT for providing backhaul communication infrastructure has been evaluated in a realistic simulation environment and compared for these two scenarios in terms of end-to-end latency per user. Simulation of Urban MObility has been used for realistic traffic generation and a Python-based program has been developed for evaluation of the communication system. The simulation results demonstrate the feasibility of using LPWAN for ITS backhaul infrastructure mostly in favor of the LTE-M over NB-IoT.


Transport ◽  
2018 ◽  
Vol 33 (3) ◽  
pp. 853-860
Author(s):  
Nicola BONGIORNO ◽  
Gaetano BOSURGI ◽  
Orazio PELLEGRINO ◽  
Giuseppe SOLLAZZO

This paper analyses the driver’ visual behaviour in the different conditions of ‘isolated vehicle’ and ‘disturbed vehicle’. If the meaning of the former is clear, the latter condition considers the influence on the driving behaviour of various objects that could be encountered along the road. These can be classified in static (signage, stationary vehicles at the roadside, etc.) and dynamic objects (cars, motorcycles, bicycles). The aim of this paper is to propose a proper analysis regarding the driver’s visual behaviour. In particular, the authors examined the quality of the visually informa-tion acquired from the entire road environment, useful for detecting any critical safety condition. In order to guaran-tee a deep examination of the various possible behaviours, the authors combined the several test outcomes with other variables related to the road geometry and with the dynamic variables involved while driving. The results of this study are very interesting. As expected, they obviously confirmed better performances for the ‘isolated vehicle’ in a rural two-lane road with different traffic flows. Moreover, analysing the various scenarios in the disturbed condition, the proposed indices allow the authors to quantitatively describe the different influence on the visual field and effects on the visual behaviour, favouring critical analysis of the road characteristics. Potential applications of these results may contribute to improve the choice of the best maintenance strategies for a road, to select the optimal signage location, to define forecasting models for the driving behaviour and to develop useful instruments for intelligent transportation systems.


2018 ◽  
Vol 7 (9) ◽  
pp. 334
Author(s):  
Chi-Hua Chen ◽  
Kuen-Rong Lo

This editorial introduces the special issue entitled “Applications of Internet of Things”, of ISPRS International Journal of Geo-Information. Topics covered in this issue include three main parts: (I) intelligent transportation systems (ITS), (II) location-based services (LBS), and (III) sensing techniques and applications. Three papers on ITS are as follows: (1) “Vehicle positioning and speed estimation based on cellular network signals for urban roads,” by Lai and Kuo; (2) “A method for traffic congestion clustering judgment based on grey relational analysis,” by Zhang et al.; and (3) “Smartphone-based pedestrian’s avoidance behavior recognition towards opportunistic road anomaly detection,” by Ishikawa and Fujinami. Three papers on LBS are as follows: (1) “A high-efficiency method of mobile positioning based on commercial vehicle operation data,” by Chen et al.; (2) “Efficient location privacy-preserving k-anonymity method based on the credible chain,” by Wang et al.; and (3) “Proximity-based asynchronous messaging platform for location-based Internet of things service,” by gon Jo et al. Two papers on sensing techniques and applications are as follows: (1) “Detection of electronic anklet wearers’ groupings throughout telematics monitoring,” by Machado et al.; and (2) “Camera coverage estimation based on multistage grid subdivision,” by Wang et al.


2020 ◽  
Vol 7 (4) ◽  
pp. 667
Author(s):  
Gede Herdian Setiawan ◽  
I Ketut Dedy Suryawan

<p>Pertumbuhan jumlah kendaraan yang semakin meningkat setiap tahunnya mengakibatkan volume kendaraan yang melintasi ruas jalan semakin padat yang kerap mengakibatkan kemacetan lalu lintas. Kemacetan lalu lintas dapat menjadi beban biaya yang signifikan terhadap kegiatan ekonomi masyarakat. Informasi lalu lintas yang dinamis seperti informasi kondisi lalu lintas secara langsung <em>(real time)</em> akan membantu mempengaruhi aktivitas masyarakat pengguna lalu lintas untuk melakukan perencanaan dan penjadwalan aktivitas yang lebih baik. Penelitian ini mengusulkan model pengamatan kondisi lalu lintas berbasis data GPS pada <em>smartphone</em>, untuk informasi kondisi lalu lintas secara langsung. GPS <em>Receiver</em> pada <em>smartphone</em> menghasilkan data lokasi secara instan dan bersifat mobile sehingga dapat digunakan untuk pengambilan data kecepatan kendaraan secara langsung. Kecepatan kendaraan diperoleh berdasarkan jarak perpindahan koordinat kendaraan dalam satuan detik selanjutnya di konversi menjadi satuan kecepatan (km/jam) kemudian data kecepatan kendaraan di proses menjadi informasi kondisi lalu lintas. Secara menyeluruh model pengamatan berfokus pada tiga tahapan, yaitu akuisisi data kecepatan kendaraan berbasis GPS pada <em>smartphone</em>, pengiriman data kecepatan dan visualisasi kondisi lalu lintas berbasis GIS. Pengujian dilakukan pada ruas jalan kota Denpasar telah mampu mendapatkan data kecepatan kendaraan dan mampu menunjukkan kondisi lalu lintas secara langsung dengan empat kategori keadaan lalu lintas yaitu garis berwarna hitam menunjukkan lalu lintas macet dengan kecepatan kendaraan kurang dari 17 km/jam, merah menunjukkan padat dengan kecepatan kendaraan 17 km/jam sampai 27 km/jam, kuning menunjukkan sedang dengan kecepatan kendaraan 26 km/jam sampai 40 km/jam dan hijau menunjukkan lancar dengan kecepatan kendaraan diatas 40 km/jam.</p><p> </p><p><em><strong>Abstract</strong></em></p><p class="Abstract"><em>The growth in the number of vehicles that is increasing every year has resulted in the volume of vehicles crossing the road increasingly congested which often results in traffic congestion. Traffic congestion can be a significant cost burden on economic activities. Dynamic traffic information such as information on real time traffic conditions will help influence the activities of the traffic user community to better plan and schedule activities. This study proposes a traffic condition observation model based on GPS data on smartphones, for information on real time traffic conditions. The GPS Receiver on the smartphone produces location and coordinate data instantly and is mobile so that it can be used for direct vehicle speed data retrieval. Vehicle speed is obtained based on the displacement distance of the vehicle's coordinates in units of seconds and then converted into units of speed (km / h), the vehicle speed data is then processed into information on traffic conditions. Overall, the observation model focuses on three stages, namely GPS-based vehicle speed data acquisition on smartphones, speed data delivery and visualization of GIS-based traffic conditions. Tests carried out on the Denpasar city road segment have been able to obtain vehicle speed data and are able to show traffic conditions directly with four categories of traffic conditions, namely black lines indicating traffic jammed with vehicle speeds of less than 17 km / h, red indicates heavy with speed vehicles 17 to 27 km / h, yellow indicates medium speed with vehicles 26 km/h to 40 km / h and green shows fluent with vehicle speeds above 40 km / h.</em></p><p><em><strong><br /></strong></em></p>


Author(s):  
V. Naren Thiruvalar ◽  
E. Vimal

The main objective of this project is to connect the vehicles together and avoid accidents by using V2V Communication. The vehicles are to be connected together by means of DSRC algorithm which is used for transceiving alert messages among the connected vehicles, in case of any emergency situation such as accidents. The Vehicle-to-Vehicle (V2V) and Vehicle-to- Infrastructure (V2I) technologies are specific cases of IoT and key enablers for Intelligent Transportation Systems (ITS). V2V and V2I have been widely used to solve different problems associated with transportation in cities, in which the most important is traffic congestion. A high percentage of congestion is usually presented by the inappropriate use of resources in vehicular infrastructure. In addition, the integration of traffic congestion in decision making for vehicular traffic is a challenge due to its high dynamic behaviour. An increase in the infrastructure growth is a possible solution but turns out to be costly in terms of both time and effort. Various applications that target transport efficiency could make use of the vast information collected by vehicles: safety, traffic management, pollution monitoring, tourist information, etc.


Author(s):  
إسراء عصام بن موسى ◽  
عبدالسلام صالح الراشدي

Vehicular Ad-hoc Network (VANET) becomes one of the most popular modern technologies these days, due to its contribution to the development and modernization of Intelligent Transportation Systems (ITS). The primary goal of these networks is to provide safety and comfort for drivers and passengers in roads. There are many types of VANET that are used in ITS, in this paper, we particularly focus on the Vehicle to Vehicle communication (V2V), which each vehicle can exchange information to inform drivers of other vehicles about the current state of the road flow, in the event of any emergency to avoid accidents, and reduce congestion on roads. We proposed V2V using Wi-Fi (wireless fidelity); the reason of its unique characteristics that distinguish it from other types. There are many difficulties and the challenges in implementing most types of V2V, and the reason is due to the lack of devices and equipment needed for real implementation. To prove the possibility of applying this type in real life, we made a prototype contains a modified toy car, a 12-volt power supply, sensors, visual, audible alarm, a visual “LED” devices, and finally a 12-volt DC relay unit. As a conclusion, the proposed implementation in spite of minimal requirements and use simple equipment, we have achieved the most important main objectives of the paper: preventing vehicles from collision, early warning, and avoiding congestion on the roads.


Sign in / Sign up

Export Citation Format

Share Document