scholarly journals Sustainable Materials -Quarry Waste and Waste Plastic as Fine Aggregate for Improving Elastic Properties of Concrete

The present paper focuses on the effective utilization of byproduct of stone mines and waste plastic causing harm to the environment. It signifies sustainable utilization of quarry dust to their full potential to meet the needs of the present, while at the same time conserving natural resources and finding ways to minimise the environmental impacts associated both with quarry fines production. Mathematical modeling for interpreting modulus of elasticity of concrete mixes using ordinary river sand and compared with 0, 25%,50%,75%, 100% replacement with quarry dust in combination with waste plastic in fabriform is discussed. The addition of fine quarry dust with ldpe as waste plastic in concrete resulted in improved matrix densification compared to conventional concrete as well as . Matrix densification has been studied qualitatively through petro graphical examination using digital optical microscopy. The structure was evaluated using SEM in quarry dust and ldpe composites. It is observed that the modulus of elasticity values found to be maximum for 50% replacement of natural sand by quarry dust and waste plastic. The effects of quarry dust on the elastic modulus property were found to be consistent with conventional natural sand.

The degree of this view is to redesign the undertaking capacity of the supportable use of quarry soil, and to discover any gaps in present day-day know-how. The time allotment affordable usage construes the utilization of quarry buildup to their complete capacity to meet the dreams of the overwhelming, on a comparative time as on the vague time keeping up customary resources and finding strategies to restrain the natural impacts related both with quarry fines gathering and use. Solid mixes had been casted the use of standard stream sand and in evaluation with 25%,50%,75%, 100% open entryway with quarry soil in blend with waste plastic in fabriform. . The development of quarry dust near to squander plastic certainly improved the strong structure homes with respect to power and vulnerability block. The development of significant worth quarry dust with ldpe as waste plastic in strong incited impelled system densification in assessment to conventional concrete. System densification has been considered abstractly through petro graphical test using virtual optical microscopy. The shape modified into evaluated using SEM in quarry dust and ldpe composites.


In recent days, there is an intense need for an alternate cost effective and sustainable raw material for concrete which does not make the structure inferior in strength. An experimental study on the utilization of the waste plastic and M-sand in the place of river sand and aggregate partially was performed in paper. In the scenario of scarcity of river sand due to the territorial government action and restriction of usage because of the eco and environmental consideration, M-Sand is found to be an effective replacement and cost effective material. Concrete specimens were casted with combination of M-sand and plastic waste with 5%, 10%, 15%, 20% and 25% and compared against control mix. Cube test for compressive strength study, cylinder test for split tensile strength study and prism test for flexural strength study were done with the proposed concert mixture. All the specimens and tests were done for different curing period of 7, 14 and 28 days. The results obtained from the proposed mix of concrete are compared with the conventional concrete mix specimen respectively. The replacement of fine aggregates reduces the quantity of river sand to be used in concrete and also plastic fibres are proved to be more economical. Positive performance of the concrete with waste plastic and M-Sand as partial replacement of river sand was observed on all the experiments and found optimal in sustainable and economical performance.


Author(s):  
D. R. Sasirekha ◽  
S. Thejaswini

In present condition to full-fill the demand of sustainable construction, concrete made with different materials is the best choice for the construction industry. Generally, we use materials which are required for conventional concrete and addition to those we replace the low-cost materials such as bottom ash in this project we replace the coal bottom ash & quarry dust to the fine aggregate by variable percentages. Coal bottom ash is the by-product of coal combustion. The rock detritus filled in the fishers of coal become separator from the coal during pulverization. In the furnace, carbon, other combustible matter burns, & the non-combustible matter result in coal ash. The coal ash collector from the electro static precipitators is called fly ash. coal bottom ash constitutes about 20% of coal ash and the result is fly ash. The perfect substitute for reverse sand is quarry dust it is the one of the ingredients in manufacture of concrete the crusher dust is known as quarry dust can be used as alternative material to the river sand. quarry dust possesses similar properties as that of river sand, hence accepted as a building material. The aggregate replaced with concrete in various percentages as both BA and QD (10%,20%&30%). All replacements where done to the m30 grade of concrete. the concrete has been replaced by coal bottom ash accordingly to the percentage, and fine aggregate has been replaced by quarry dust in percentage. concrete mixtures where produced, tested & compared in terms of compressive strength, tensile, flexural strength are evaluated. The curing of cubes, cylinders, & beams is 7days 28days & 90days.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
V. M. Sounthararajan ◽  
A. Sivakumar

The objective of this study is to identify the possibilities of utilizing the quarry dust in concrete to obtain an improved strength and durability properties of concrete. In the present study, the addition of quarry dust as alternative for natural sand has been investigated, and the durability properties of concrete were evaluated systematically by means of cracked water permeability and rapid chloride permeability tests. The permeability of concrete was assessed with initial stress applied to the concrete specimen and later checked for water permeability. Concrete mixes were casted using ordinary river sand and compared with 100% quarry dust substituted concrete. The addition of quarry dust significantly improved the concrete matrix properties in terms of strength and permeability resistance. The addition of fine quarry dust in concrete resulted in improved matrix densification compared to conventional concrete. Matrix densification has been studied qualitatively through petrographical examination using digital optical microscopy.


2021 ◽  
Vol 945 (1) ◽  
pp. 012037
Author(s):  
A A Dyg Siti Quraisyah ◽  
K Kartini ◽  
M S Hamidah

Abstract In construction industry nowadays, self-compacting concrete (SCC) is a concrete technology innovation which gives more benefits over conventional concrete. SCC was invented to improve concrete durability without using any vibrator while placing it into formwork. In order to conserve natural sand, quarry dust (QD) as a waste and sustainable material has been incorporated to replace fine aggregate in SCC. In this study, conventional concrete and quarry dust in self-compacting concrete (QDSCC) mixes consist of 0%, 10%, 20%, 30%, 40% and 50% QD were prepared. The workability test was conducted to determine the performance of fresh concrete and ensuring all the QDSCC properties follow the acceptance criteria for SCC. Meanwhile, the hardened concrete specimens were water cured for 7, 28 and 60 days to conduct water absorption test. This research aim is to determine water absorption of incorporating sustainable QDSCC. Thus, it resulted that 50% of QDSCC has achieved the lowest water absorption of QDSCC as compared to other dosages. Finally, sustainability in concrete technology can be promoted by incorporating QDSCC.


2021 ◽  
Vol 889 (1) ◽  
pp. 012067
Author(s):  
Khundrakpam Binod Singh ◽  
Avani Chopra

Abstract Quarry dust is considered as a possible source of natural sand or fine aggregate in concrete construction work. This could reduce the problem of dumping of quarry dust as a byproduct from stone crusher factory. The experimental work investigates the optimum quarry dust percentage which can be adopted as replacement of fine aggregate in concrete mainly for rigid pavement. The quarry dust is added at different percentages of 0%, 20%, 40%, 60%, 80%, and 100% replacement of fine aggregate for M35 grade concrete thereby to find out the optimum content of quarry dust that can give better strength in concrete. Mix design has been developed for M35 grade of concrete as per IRC 044 – 2017(Mix Design for Concrete Pavement) and mix design ratio is found as 1: 1.6: 2.62 by using Sulfonated naphthalene formaldehyde (SNF) as an admixture at 1%, and 2%. The required water cement ratio was obtained as 0.39 according to table no.9 of IRC 044 for the target strength of 42.5 N/mm2. Optimum strength and workability test values of concrete made up for various proportions of quarry dust along with SNF are compared with conventional concrete of natural fine aggregate after 7 days and 28 days curing. It is found that the strength increased with the increase in curing time and the maximum strength at 28 days curing and 60% quarry dust replacement with 2% addition of SNF. The maximum strength of quarry replaced concrete is obtained as 40.3MPa, 5.6MPa, and 5.1MPa for compressive, flexural, and split tensile respectively.


Author(s):  
Suraj V Borsare

The role of quarry dust in the construction of building and other structures to eliminate the demand of nature sand by using quarry waste to replace the use of natural sand. We are investigating the potential of using quarry waste and its effect on the strength and workability of concrete. Initially cement concrete cube was studied with various proportion of cement concrete +quarry dust (M20 & M25). The experimental result showed that the additional of quarry dust as fine aggregate ratio of 30%, 40% and 50% was found to enhance the compressive properties. The compressive strength of concrete cubes at the age of 7 and 28 days were obtained at room temperature. These raw materials of concrete, i.e., river sand and gravel, are also struggling to cope with the rapidly growing demand in many areas around the globe. The sources of good quality river sand and gravel are depleting very fast. According to United Nations Environment Program (UNEP) report, “Sand-rarer than one thinks”, published in March2014, sand and gravel has now become the most widely used natural resource on the planet after water. These are now being extracted at a rate far greater than their renewal. Crushed sands, fine aggregate produced from stone crushing, has become very popular in areas where natural sand is not abundantly available or where there is scarcity in the supply of natural sand. The Mumbai-Pune express highway was a project, where there is a difficulty in procurement of natural sand. This made the construction company to use crushed sand for making approximately 20 lakh cum of concrete necessary for the construction. However, such type of sands contains a large amount of micro-fines, i.e., particles finer than 75 microns, which can have an adverse effect on properties of concrete. So proportioning of different raw materials at the time of mix design is very important, when crushed sand is used in concrete The availability of sand at low cost as a fine aggregate in concrete is not suitable and that is the reason to search for an alternative material. Quarry dust satisfies the reason behind the alternative material as a substitute for sand at very low costIt is found that 40% replacement of fine aggregate by quarry dust gives maximum result in strength than normal concrete and then decreases from 50%. The compressive strength is quantified for varying percentage and grades of concrete by replacement of sand with quarry dust.


This paper presents an experimental investigation on the properties of concrete in which like cement is partially replacing by used nano silica and is partially replacing by used waste foundry sand. Because now a day the world wide consumption of sand as cement and as fine aggregate in concrete production is very high. Nano silica and waste foundry sand are major by product of casting industry and create land pollution. The cement will be replaced with nano silica and the river sand will be replaced with waste foundry sand (0%, 5%, 10%, 15%, 20%). This experimental investigation was done and found out that with the increase in the nano silica and waste foundry sand ratio. Compression test has been done to find out the compressive strength of concrete at the age of 7, 14, 21, and 28. Test result indicates in increasing compressive strength of plain concrete by inclusion of nano silica as a partial replacement of cement and waste foundry sand as a partial replacement of fine aggregate.


2018 ◽  
Vol 6 (6) ◽  
pp. 453-460
Author(s):  
Chijioke C ◽  
Nwaiwu ◽  
Aginam ◽  
Anyadiegwu

This work focuses on the 100% replacement of river sand with quarry dust in the production of concrete. Two types of concrete were produced (concrete made with river sand and that made with quarry dust as fine aggregate), the concretes produces were cast into beams and cured for 28 days. The flexural strengths of the concrete beams cast was determine at 28 day strength. At 28 days target strength the maximum flexural strength of concrete made with river sand as fine aggregate is 5.375111N/mm2 and minimum flexural strength is 2.2155N/mm2, for the concrete made with quarry dust as fine aggregate the maximum flexural strength is 2.567 N/mm2. The maximum value of 2.567 N/mm2 for concrete made with quarry dust as fine aggregate is higher than the minimum value of 2.2155N/mm2 for concrete made with river sand as fine aggregate. With this result it shows that quarry dust is a good substitute to river sand in the production of concrete.


Sign in / Sign up

Export Citation Format

Share Document