scholarly journals Replacement of Sand by Quarry Dust in Concrete

Author(s):  
Suraj V Borsare

The role of quarry dust in the construction of building and other structures to eliminate the demand of nature sand by using quarry waste to replace the use of natural sand. We are investigating the potential of using quarry waste and its effect on the strength and workability of concrete. Initially cement concrete cube was studied with various proportion of cement concrete +quarry dust (M20 & M25). The experimental result showed that the additional of quarry dust as fine aggregate ratio of 30%, 40% and 50% was found to enhance the compressive properties. The compressive strength of concrete cubes at the age of 7 and 28 days were obtained at room temperature. These raw materials of concrete, i.e., river sand and gravel, are also struggling to cope with the rapidly growing demand in many areas around the globe. The sources of good quality river sand and gravel are depleting very fast. According to United Nations Environment Program (UNEP) report, “Sand-rarer than one thinks”, published in March2014, sand and gravel has now become the most widely used natural resource on the planet after water. These are now being extracted at a rate far greater than their renewal. Crushed sands, fine aggregate produced from stone crushing, has become very popular in areas where natural sand is not abundantly available or where there is scarcity in the supply of natural sand. The Mumbai-Pune express highway was a project, where there is a difficulty in procurement of natural sand. This made the construction company to use crushed sand for making approximately 20 lakh cum of concrete necessary for the construction. However, such type of sands contains a large amount of micro-fines, i.e., particles finer than 75 microns, which can have an adverse effect on properties of concrete. So proportioning of different raw materials at the time of mix design is very important, when crushed sand is used in concrete The availability of sand at low cost as a fine aggregate in concrete is not suitable and that is the reason to search for an alternative material. Quarry dust satisfies the reason behind the alternative material as a substitute for sand at very low costIt is found that 40% replacement of fine aggregate by quarry dust gives maximum result in strength than normal concrete and then decreases from 50%. The compressive strength is quantified for varying percentage and grades of concrete by replacement of sand with quarry dust.

2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
K. Shyam Prakash ◽  
Ch. Hanumantha Rao

The concept of replacement of natural fine aggregate by quarry dust which is highlighted in the study could boost the consumption of quarry dust generated from quarries. By replacement of quarry dust, the requirement of land fill area can be reduced and can also solve the problem of natural sand scarcity. The availability of sand at low cost as a fine aggregate in concrete is not suitable and that is the reason to search for an alternative material. Quarry dust satisfies the reason behind the alternative material as a substitute for sand at very low cost. It even causes burden to dump the crusher dust at one place which causes environmental pollution. From the results of experimental investigations conducted, it is concluded that the quarry dust can be used as a replacement for fine aggregate. It is found that 40% replacement of fine aggregate by quarry dust gives maximum result in strength than normal concrete and then decreases from 50%. The compressive strength is quantified for varying percentage and grades of concrete by replacement of sand with quarry dust.


Author(s):  
S.O Ajamu ◽  
I.A Raheem ◽  
S.B Attah ◽  
J.O Onicha

Natural river sand is one of the important constituent materials in concrete production while stone dust is a material obtained from crusher plants which is also sometimes being used either partially or fully in replacement of natural river sand in concrete production. Use of stone dust in concrete not only improves the quality of concrete but also conserve the natural river sand. However, due its scarcity and environmental degradation caused resulting from excessive mining of Natural river sand, there is need to investigate an alternative material of the same quality which can replace river sand in concrete production. In the present study, experiments were carried out to study the gradation of aggregates, workability, compressive strength and split tensile strength of concrete made using quarry dust as replacement of fine aggregate at 0, 25, 50, 75, and 100%. Grade M15 of concrete was produced with ordinary Portland cement (OPC) for referral concrete while M25 of concrete was prepared for compressive strength and split tensile strength concrete. Workability and Compressive strength were determined at different replacement level of fine aggregate and optimum replacement level was determined based on compressive strength. Results showed that by replacing 50% of fine aggregate with quarry dust, concrete of maximum compressive strength can be produced as compared to all other replacement levels. The effect of quarry dust on compressive strength and split tensile strength was investigated and from the overall result obtained, it was observed that the compressive strength and split tensile strength increased significantly for all the curing ages from 0% to 50% replacement level of quarry dust. Maximum value obtained for 28day compressive and tensile strength were 25N/mm2 and 2.3N/mm2 respectively and this occurred at 50% replacement.


The present paper focuses on the effective utilization of byproduct of stone mines and waste plastic causing harm to the environment. It signifies sustainable utilization of quarry dust to their full potential to meet the needs of the present, while at the same time conserving natural resources and finding ways to minimise the environmental impacts associated both with quarry fines production. Mathematical modeling for interpreting modulus of elasticity of concrete mixes using ordinary river sand and compared with 0, 25%,50%,75%, 100% replacement with quarry dust in combination with waste plastic in fabriform is discussed. The addition of fine quarry dust with ldpe as waste plastic in concrete resulted in improved matrix densification compared to conventional concrete as well as . Matrix densification has been studied qualitatively through petro graphical examination using digital optical microscopy. The structure was evaluated using SEM in quarry dust and ldpe composites. It is observed that the modulus of elasticity values found to be maximum for 50% replacement of natural sand by quarry dust and waste plastic. The effects of quarry dust on the elastic modulus property were found to be consistent with conventional natural sand.


2021 ◽  
Vol 1041 ◽  
pp. 89-94
Author(s):  
Nurul Aini Salehuddin ◽  
Mohd Fadzil Arshad ◽  
Zakiah Ahmad ◽  
Mohd Zaim Mohd Nor ◽  
Abdul Hadi Hassan

In this study, the effect of replacing the river sand with industrial waste and cellulosic waste was investigated. The cellulosic waste use in this study only focuses on kenaf core, while the industrial waste use in this study is quarry dust. The fine aggregate formulation is adjusted with a different percentage of kenaf core. While the quarry dust is fixed at 50% replacement level. The water-cement ratio set for the formulation is 0.75, and the cement-sand ratio fixes at 1:8. The physical properties are measured through compressive strength and density at 28 days. The result shows that 10% is the maximum replacement of sand with kenaf core to produced brick that using 50% of quarry dust. The compressive strength value of the 10% of kenaf core at 28 days is 8.16 N/mm2 while for density is 1830 kg/m3 at 28 days. All the result shows that kenaf core has the potential to be used as a lightweight fine aggregate. But kenaf core needs to combine with other materials that contribute to the strength.


2014 ◽  
Vol 875-877 ◽  
pp. 619-623 ◽  
Author(s):  
Suppachai Sinthaworn ◽  
Wasan Teerajetgul ◽  
Attasit Sirivachiraporn

In this study, the workability, the compressive strength and the water penetration depth under pressure for concrete incorporate with quarry waste as fine aggregate were investigated. The mix proportions of concrete were set into two classes of water to cement ratio (w/c = 0.4, 0.6). The first class (C1), the mix proportion is 1.0:0.6:2.0:4.0 (Cement: Water: Fine: Coarse). And the second class (C2), the mix proportion is 1.0:0.4:1.5:3.0 and adding the superplasticizer 1% of cement weight. The natural river sand, which use in concrete, was partially replaced by quarry dust at the rates of 0% (no quarry dust), 50% and 100 % by weight of fine aggregate. The results show that concrete containing quarry wastes as fine aggregate decreased the workability and do not significantly affect the 28-day compressive strength whereas concrete incorporating with quarry dusts reduces the water penetration depth.


2017 ◽  
Vol 5 (2) ◽  
pp. 112-122
Author(s):  
Neeru Singla ◽  
Mandeep Kumar

Construction industry relies heavily on conventional material such as cement, sand and gravel for the production of concrete The river sand and gravels which are most commonly used as fine aggregates and coarse aggregates respectively in the production of concrete, poses the problem of acute shortage in many areas, whose continued use has started posing serious problem with respect to its availability, cost and environmental impact. Attempt is being made in this project to use the locally available waste materials to replace the river sand and gravels to produce light weight and low cost concrete. Sawdust and Brick ballast are easily affordable at low costs, which are partially replaces with river sand and gravels respectively for making concrete. Natural sand and Gravels have been partially replaced (4% SD 8% BB, 4% SD 16% BB, 4% SD 24% BB, 8% SD 8% BB, 8% SD 16% BB, 8% SD 24% BB, 12% SD 8% BB, 12% SD 16% BB and 12% SD 24% BB. by using M30 grade of concrete) with sawdust and broken brick ballast respectively. For this, thirty concrete cubes of size 150mm X 150mm X 150mm have been casted and water cement ratio of 0.42 has been used. Water reducing admixture is used to increase the workability. Slump test, Compacting factor test and compressive strength at (28 days) of specimens having above combinations have been compared with control specimens. The workability and compressive strength gradually decreases for the increasing the replacement percentages. The optimum mix found to produce M30 grade of concrete is 8% of sawdust and 16% of Brick ballast.


2019 ◽  
Vol 8 (3) ◽  
pp. 8354-8358

Self-compacting concrete is also called as self consolidated concrete which does not require vibration for placing and compaction. In the present trend scarcity of natural sand become a huge problem to construction industry, inorder to reduce this problem alternatives are used, one of the alternative material is Manufactured sand. Manufactured sand is produced from hard granite stone by crushing. There are two reasons to M-sand i.e, availability & transportation. An attempt was made to evaluate the workability and strength characteristics & durability properties of self compacting concrete with river sand and manufactured sand as fine aggregates. For each replacement level, constant workability was maintained by varying the dosage of superplasticizer. Sulphate attack and chloride attack of the specimens were determined. Different proportions of solution are used for durability study.


Around 5% of worldwide CO2 discharges originate from bond generation. Gas outflow is the consequence of fuel ignition and compound responses that occur in various phases of the procedure, principally in the clinker blazing stage. Amid the procedure of bond assembling, around 0.92 t of CO2 is discharged per ton of clinker delivered. This discharge for the most part originates from decarbonization of limestone, and the utilization of carbon energizes for warming (0.39 t). Normal CO2 outflows take up with processing procedures are 0.1 t of CO2 for each ton of concrete and originates from creation of power. The materials utilized incorporate Ordinary Portland Cement, quarry-tidy, waterway sand and water. Bond, Quarry clean and River sand are tried for their physical attributes according to the significant measures. The outcomes demonstrated that 30% substitution of quarry tidy gives more quality and it is appropriate for field works.


Author(s):  
S. N. Manjunath ◽  
D. Mohammed Rafi ◽  
A. B. S. Dadapeer

Concrete is the most widely used composite construction material. Fine aggregate plays a very important role for imparting better properties to concrete in its fresh and hardened state. Generally, river sand was used as fine aggregate for construction. Due to the continuous mining of sand from riverbed led to the depletion of river sand and it became a scarce material. Also, sand mining from river bed caused a lot of environmental issues. As a substitute to river sand, Robo sand has been used. In this present experimental study a comparative study has been carried out to check the usability of Robo sand in place of natural sand. This study involves determination of some major properties of concrete like compressive strength, split tensile strength, flexural tensile strength and durability in acidic medium made of both the sands. Based on proposed studies, quality of Robo sand is equivalent to natural sand in many respects, such as cleanliness, grading, strength, angularity, specific gravity. Conclusion have been arrived that Robo sand produced from VSI (vertical shaft impact or) is a suitable and viable substitute to river sand and could be effectively used in making concrete which provides adequate strength and durability for the concrete. In the design of concrete structures, concrete is taken into account by taking its compressive strength value. The compressive strength of the concrete made of Robo sand is observed to be very nearer to the strength of the concrete made of natural sand in the present investigation, there by 100% replacement is reasonable.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Baboo Rai ◽  
Sanjay Kumar ◽  
Kumar Satish

This paper presents the results of an experimental investigation carried out to evaluate the compressive strength and transverse strength of 1 : 3 mortar mixes in which natural sand was replaced with 20%, 50%, and 100% quarry dust by weight which were further modified by partially replacing cement with four percentages (15%, 20%, 25%, and 30%) of low calcium fly ash. The compressive strength was determined at 3, 7, 28, and 50 days of age while transverse strength was determined at 28 and 50 days age. Test results revealed that the combined use of quarry rock dust and fly ash exhibited excellent performance due to efficient microfilling ability and pozzolanic activity.


Sign in / Sign up

Export Citation Format

Share Document