scholarly journals Seismic Design of Precast Component Beam-Column Joints using Headed Anchors

Precast construction system ensures high degree of quality, safety, and accelerated construction practice in R.C structures. It is well established in non-seismic conditions where gravity loads are predominated. But it is hesitated to implement during seismic conditions by the effect of lateral loads. Most of structural failures in precast framed structures are associated with beam-column joints as the integrated joint system experience high shear, and moments by cyclic action of seismic loads. In this context, researchers found that the joint distortions in precast system is well associated with its location of beam-column sub-assemblage. In beam-column joints the connections are attributed to locate in D-regions (D:Discrete) and B-regions (B:Beam) where the force transfer mechanism follows by strut - tie method (STM) or flexure beam theory(FBT) respectively. This paper analyzed the seismic performance of “Component Based Precast Joints”[CBPJ] located in D& B regions. To meet the convergence requirements, the connection systems are detailed by mechanical couplers and headed anchors. Five numerical models of exterior beam-column joints representing two models (BM1,BM2) of B-region and three models (DM1,DM2,DM3) of D-region are developed and verified their seismic performance with monolithic joint system by non-linear finite element analysis using ABAQUS software .The results indicated that the use of headed anchors in precast joints are effectively contributed to seismic requirements of shear, ductility, stiffness and energy dissipation. Also the precast joints located in D & B regions resembling good performance of joint sustainability during moderate seismic conditions as monolithic system.

1988 ◽  
Vol 16 (3) ◽  
pp. 146-170 ◽  
Author(s):  
S. Roy ◽  
J. N. Reddy

Abstract A good understanding of the process of adhesion from the mechanics viewpoint and the predictive capability for structural failures associated with adhesively bonded joints require a realistic modeling (both constitutive and kinematic) of the constituent materials. The present investigation deals with the development of an Updated Lagrangian formulation and the associated finite element analysis of adhesively bonded joints. The formulation accounts for the geometric nonlinearity of the adherends and the nonlinear viscoelastic behavior of the adhesive. Sample numerical problems are presented to show the stress and strain distributions in bonded joints.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Arnab Bose ◽  
Prabhakar Sathujoda ◽  
Giacomo Canale

Abstract The present work aims to analyze the natural and whirl frequencies of a slant-cracked functionally graded rotor-bearing system using finite element analysis for the flexural vibrations. The functionally graded shaft is modelled using two nodded beam elements formulated using the Timoshenko beam theory. The flexibility matrix of a slant-cracked functionally graded shaft element has been derived using fracture mechanics concepts, which is further used to develop the stiffness matrix of a cracked element. Material properties are temperature and position-dependent and graded in a radial direction following power-law gradation. A Python code has been developed to carry out the complete finite element analysis to determine the Eigenvalues and Eigenvectors of a slant-cracked rotor subjected to different thermal gradients. The analysis investigates and further reveals significant effect of the power-law index and thermal gradients on the local flexibility coefficients of slant-cracked element and whirl natural frequencies of the cracked functionally graded rotor system.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
B. Saraswathy ◽  
R. Ramesh Kumar ◽  
Lalu Mangal

Analytical formulation for the evaluation of frequency of CFRP sandwich beam with debond, following the split beam theory, generally underestimates the stiffness, as the contact between the honeycomb core and the skin during vibration is not considered in the region of debond. The validation of the present analytical solution for multiple-debond size is established through 3D finite element analysis, wherein geometry of honeycomb core is modeled as it is, with contact element introduced in the debond region. Nonlinear transient analysis is followed by fast Fourier transform analysis to obtain the frequency response functions. Frequencies are obtained for two types of model having single debond and double debond, at different spacing between them, with debond size up to 40% of beam length. The analytical solution is validated for a debond length of 15% of the beam length, and with the presence of two debonds of same size, the reduction in frequency with respect to that of an intact beam is the same as that of a single-debond case, when the debonds are well separated by three times the size of debond. It is also observed that a single long debond can result in significant reduction in the frequencies of the beam than multiple debond of comparable length.


2016 ◽  
Vol 687 ◽  
pp. 236-242 ◽  
Author(s):  
Piotr Lacki ◽  
Judyta Różycka ◽  
Marcin Rogoziński

This requires the use of additional reinforcement in order to prevent excessive or permanent deformation of PVC windows. In the paper particular attention was devoted to space located in a corrosive environment exposed to chemical agents. For this purpose, proposed to change the previously used steel profiles reinforcements made of Ti6Al4V titanium alloy corrosion-resistant in the air, at sea and many types of industrial atmosphere. Analysis of the thermal insulation properties of PVC windows with additional reinforcement of profile Ti6Al4V titanium alloy was performed. PVC window set in a layer of thermal insulation was analyzed. Research was conducted using Finite Element Analysis. Numerical models and thermal calculations were made in the program ADINA, assuming appropriate material parameters. The constant internal temperature of 20 ̊ and an outer-20 ̊ was assumed. The course of temperature distribution in baffle in time 24 hours and graphs of characteristic points was obtained. The time of in which followed the steady flow of heat, as well as the course of isotherm of characteristic temperature in the baffle was determined. On the basis of numerical analysis obtained vector distribution of heat flux q [W/m2] and was determined heat transfer coefficients U [W/m2K] for the whole window with titanium reinforcement . All results were compared with the model of PVC windows reinforced with steel profile.


2008 ◽  
Vol 75 (3) ◽  
Author(s):  
Peter J. Ryan ◽  
George G. Adams ◽  
Nicol E. McGruer

In beam theory, constraints can be classified as fixed/pinned depending on whether the rotational stiffness of the support is much greater/less than the rotational stiffness of the freestanding portion. For intermediate values of the rotational stiffness of the support, the boundary conditions must account for the finite rotational stiffness of the constraint. In many applications, particularly in microelectromechanical systems and nanomechanics, the constraints exist only on one side of the beam. In such cases, it may appear at first that the same conditions on the constraint stiffness hold. However, it is the purpose of this paper to demonstrate that even if the beam is perfectly bonded on one side only to a completely rigid constraining surface, the proper model for the boundary conditions for the beam still needs to account for beam deformation in the bonded region. The use of a modified beam theory, which accounts for bending, shear, and extensional deformation in the bonded region, is required in order to model this behavior. Examples are given for cantilever, bridge, and guided structures subjected to either transverse loads or residual stresses. The results show significant differences from the ideal bond case. Comparisons made to a three-dimensional finite element analysis show a good agreement.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2506 ◽  
Author(s):  
Chao Liu ◽  
Yaoyao Shi

Dimensional control can be a major concern in the processing of composite structures. Compared to numerical models based on finite element methods, the analytical method can provide a faster prediction of process-induced residual stresses and deformations with a certain level of accuracy. It can explain the underlying mechanisms. In this paper, an improved analytical solution is proposed to consider thermo-viscoelastic effects on residual stresses and deformations of flat composite laminates during curing. First, an incremental differential equation is derived to describe the viscoelastic behavior of composite materials during curing. Afterward, the analytical solution is developed to solve the differential equation by assuming the solution at the current time, which is a linear combination of the corresponding Laplace equation solutions of all time. Moreover, the analytical solution is extended to investigate cure behavior of multilayer composite laminates during manufacturing. Good agreement between the analytical solution results and the experimental and finite element analysis (FEA) results validates the accuracy and effectiveness of the proposed method. Furthermore, the mechanism generating residual stresses and deformations for unsymmetrical composite laminates is investigated based on the proposed analytical solution.


2013 ◽  
Vol 831 ◽  
pp. 137-140
Author(s):  
Kang Min Lee ◽  
Liu Yi Chen ◽  
Rui Li ◽  
Keun Yeong Oh ◽  
Young Soo Chun

Coupling beams resist lateral loads efficiently is well known in coupled wall systems. In many cases, geometric limits result in coupling beams that are deep in relation to their clear span. Coupling beams with small depth-to-span ratio shall be reinforced with two intersecting groups of diagonally placed bars symmetrical along the mid-span. It's always hard to optimize construction projects. This paper used the finite element software (Abaqus) to analysis and simulate the nonlinear behavior of a new reinforcement called head bar and compared the results to the current standards.


Sign in / Sign up

Export Citation Format

Share Document