scholarly journals Optimization Tool Wear on Hard Turning of AISI4140 Steel with Coated Carbide Tool Cutting Conditions

In recent year’s traditional grinding process are being replaced by hard turning for the finishing operation of hardened steel. High rate of TW and the cost of CBN inserts associated with hard turning is a cause of concern. In order to minimize the TW, this work proposes the optimal cutting conditions for the hard turning of Hardened AISI 4140 steel (47 HRC) utilizing low affluent CVD coated Ti(C, N) + Al2O3 carbide tool. All the trials are conceded out based on Design of Experiments. Response surface methodology based on BBD is followed for experimentation. The ANOVA is utilized to recognize the most impacting parameters on the TW. Results indicate that both the CS and the DoC influences the TW. Optimization results reveal lower CS results in minimal TW




2017 ◽  
Vol 65 (4) ◽  
pp. 553-559 ◽  
Author(s):  
D. Rajeev ◽  
D. Dinakaran ◽  
S.C.E. Singh

AbstractNowadays, finishing operation in hardened steel parts which have wide industrial applications is done by hard turning. Cubic boron nitride (CBN) inserts, which are expensive, are used for hard turning. The cheaper coated carbide tool is seen as a substitute for CBN inserts in the hardness range (45–55 HRC). However, tool wear in a coated carbide tool during hard turning is a significant factor that influences the tolerance of machined surface. An online tool wear estimation system is essential for maintaining the surface quality and minimizing the manufacturing cost. In this investigation, the cutting tool wear estimation using artificial neural network (ANN) is proposed. AISI4140 steel hardened to 47 HRC is used as a work piece and a coated carbide tool is the cutting tool. Experimentation is based on full factorial design (FFD) as per design of experiments. The variations in cutting forces and vibrations are measured during the experimentation. Based on the process parameters and measured parameters an ANN-based tool wear estimator is developed. The wear outputs from the ANN model are then tested. It was observed that as the model using ANN provided quite satisfactory results, and that it can be used for online tool wear estimation.



Author(s):  
Anshuman Das ◽  
Miyaz Kamal ◽  
Sudhansu Ranjan Das ◽  
Saroj Kumar Patel ◽  
Asutosh Panda ◽  
...  

AISI D6 (hardness 65 HRC) is one of the hard-to-cut steel alloys and commonly used in mould and die making industries. In general, CBN and PCBN tools are used for machining hardened steel but its higher cost makes the use for limited applications. However, the usefulness of carbide tool with selective coatings is the best substitute having comparable tool life, and in terms of cost is approximately one-tenth of CBN tool. The present study highlights a detailed analysis on machinability investigation of hardened AISI D6 alloy die steel using newly developed SPPP-AlTiSiN coated carbide tools in finish dry turning operation. In addition, a comparative assessment has been performed based on the effectiveness of cutting tool performance of nanocomposite coating of AlTiN deposited by hyperlox PVD technique and a coating of AlTiSiN deposited by scalable pulsed power plasma (SPPP) technique. The required number of machining trials under varied cutting conditions (speed, depth of cut, feed) were based on L16 orthogonal array design which investigated the crater wear, flank wear, surface roughness, chip morphology, and cutting force in hard turning. Out of the two cutting tools, newly-developed nanocomposite (SPPP-AlTiSiN) coated carbide tool promises an improved surface finish, minimum cutting force, longer tool life due to lower value of crater & flank wears, and considerable improvement in tool life (i.e., by 47.83%). At higher cutting speeds, the crater wear length and flank wear increases whereas the surface roughness, crater wear width and cutting force decreases. Chip morphology confirmed the formation of serrated type saw tooth chips.



Measurement ◽  
2012 ◽  
Vol 45 (7) ◽  
pp. 1872-1884 ◽  
Author(s):  
R. Suresh ◽  
S. Basavarajappa ◽  
G.L. Samuel


2015 ◽  
Vol 798 ◽  
pp. 377-383 ◽  
Author(s):  
Tadahiro Wada ◽  
Hiroyuki Hanyu

An aluminum/chromium based coating film, called (Al,Cr)N coating film, has been developed. This coating film has a slightly more inferior critical scratch load and micro-hardness. Therefore, to improve both the scratch strength and micro-hardness of the (Al,Cr)N coating film, the cathode material of an alumi-num/chromium/tungsten target was used in adding the tungsten (W) to the cathode material of the alumi-num/chromium target. To clarify the effectiveness of the aluminum/chromium/tungsten-based coating film, we measured the thickness, micro-hardness and critical scratch strength of aluminum/chromium/tungsten-based coating film formed on the surface of a substrate of cemented carbide ISO K10 formed by the arc ion plating process. The hardened steel ASTM D2 was turned with the (Al,Cr,W)N, (Al,Cr,W)(C,N), (Al,Cr)N and the (Ti,Al)N coated cemented carbide tools. The tool wear of the coated cemented carbide tools was ex-perimentally investigated. The following results were obtained: (1) The micro-hardness of the (Al,Cr,W)N or (Al,Cr,W)(C,N), (Al,Cr)N coating film was 3110 HV0.25N or 3080 HV0.25N, respectively. (2) The critical scratch load of the (Al,Cr,W)(C,N) coating film was 123 N, which was much higher than that of the (Al,Cr)N or (Ti,Al)N coating film. (3) In cutting the hardened steel using (Al,Cr,W)(C,N) and (Ti,Al)N coated carbide tools, the wear progress of the (Al,Cr,W)(C,N) coated carbide tool was almost equivalent to that of the (Ti,Al)N coated carbide tool. The above results clarify that the aluminum/chromium/tungsten-based coating film, which is a new type of coating film, has both high hardness and good adhesive strength, and can be used as a coating film of WC-Co cemented carbide cutting tools.



2011 ◽  
Vol 264-265 ◽  
pp. 894-900 ◽  
Author(s):  
Mokhtar Suhaily ◽  
A.K.M. Nurul Amin ◽  
Anayet Ullah Patwari ◽  
Nurhayati Ab. Razak

Hardened materials like AISI H13 steel are generally regarded as s difficult to cut materials because of their hardness due to intense of carbon content, which however allows them to be used extensively in the hot working tools, dies and moulds. The challenges in machining steels at their hardened state led the way to many research works in amelioration its machinability. In this paper, preheating technique has been used to improve the machinability of H13 hardened steel for different cutting conditions. An experimental study has been performed to assess the effect of workpiece preheating using induction heating system to enhance the machinability of AISI H13. The preheated machining of AISI H13 for two different cutting conditions with TiAlN coated carbide tool is evaluated by examining tool wear, surface roughness and vibration. The advantages of preheated machining are demonstrated by a much extended tool life and stable cut as lower vibration/chatter amplitudes. The effects of preheating temperature were also investigated on the chip morphology during the end milling of AISI H13 tool steel, which resulted in reduction of chip serration frequency. The preheating temperature was maintained below the phase change temperature of AISI H13. The experimental results show that preheated machining led to appreciable increasing tool life compared to room temperature machining. Abrasive wear, attrition wear and diffusion wear are found to be a very prominent mechanism of tool wear. It has been also observed that preheated machining of the material lead to better surface roughness values as compared to room temperature machining.



POROS ◽  
2018 ◽  
Vol 16 (1) ◽  
Author(s):  
Sobron Yamin Lubis

Determination of optimum cutting speed in the lathe process should be considered in order to produce minimal machining costs and maximum production. Research The determination of optimum cutting speed was done to investigate the effect of cutting speed when cutting AISI 4140 steel against cost and production obtained. This study was conducted experimentally using lathe and theoretical calculations to determine machining costs and the amount of production produced. The lathe process is carried out using carbide cutting tools for cutting of AISI 4140 steel metal. In this machining the data obtained is the cutting time of the machining process tail loading process then the data is incorporated into the equation together with the cutting force, the cost of the cutting tools, the workpiece, the cost labourers. Then from the calculation results obtained by graph machining cost and production amount. Based on the graph, it is observed minimal machining cost and maximum production amount to know the optimum cutting point. The results obtained .The increase in cutting rate gives effect to the increase of production quantity, while for calculation of machining cost has decreased. Machining time has a significant effect on the change of production quantity and machining cost. The optimal cutting speed (Vcopt) is 269 m / min.



Sign in / Sign up

Export Citation Format

Share Document