scholarly journals Machine Learning Based Technique for Detection of Rank Attack in RPL based Internet of Things Networks

Internet of Things (IoT) is a new Paradiagram in the network technology. It has the vast application in almost every field like retail, industries, and healthcare etc. It has challenges like security and privacy, robustness, weak links, less power, etc. A major challenge among these is security. Due to the weak connectivity links, these Internet of Things network leads to many attacks in the network layer. RPL is a routing protocol which establishes a path particularly for the constrained nodes in Internet of Things based networks. These RPL based network is exposed to many attacks like black hole attack, wormhole attack, sinkhole attack, rank attack, etc. This paper proposed a detection technique for rank attack based on the machine learning approach called MLTKNN, based on K-nearest neighbor algorithm. The proposed technique was simulated in the Cooja simulation with 30 motes and calculated the true positive rate and false positive rate of the proposed detection mechanism. Finally proved that, the performance of the proposed technique was efficient in terms of the delay, packet delivery rate and in detection of the rank attack.

2021 ◽  
Author(s):  
Prasannavenkatesan Theerthagiri ◽  
Usha Ruby A ◽  
Vidya J

Abstract Diabetes mellitus is characterized as a chronic disease may cause many complications. The machine learning algorithms are used to diagnosis and predict the diabetes. The learning based algorithms plays a vital role on supporting decision making in disease diagnosis and prediction. In this paper, traditional classification algorithms and neural network based machine learning are investigated for the diabetes dataset. Also, various performance methods with different aspects are evaluated for the K-nearest neighbor, Naive Bayes, extra trees, decision trees, radial basis function, and multilayer perceptron algorithms. It supports the estimation on patients suffering from diabetes in future. The results of this work shows that the multilayer perceptron algorithm gives the highest prediction accuracy with lowest MSE of 0.19. The MLP gives the lowest false positive rate and false negative rate with highest area under curve of 86 %.


Wireless networks are continuously facing challenges in the field of Information Security. This leads to major researches in the area of Intrusion detection. The working of Intrusion detection is performed mainly by signature based detection and anomaly based detection. Anomaly based detection is based on the behavior of the network. One of the major challenge in this domain is to identify and detect the malicious node in wireless networks. The intrusion detection mechanism has to analyse the behavior of the node in the network by means of the several features possessed by each node. Intelligent schemes are the need of the hour in such scenario. This paper has taken a standard dataset for studying the features of the wireless node and reduced the features by applying the most efficient Correlation Attribute feature selection method. The machine learning algorithms are applied to obtain an effective training model which is then applied on the testing dataset to validate the model. The accuracy of the model is determined by the performance parameters such as true positive rate, false positive rate and ROC area. Neural network, bagging and decision tree algorithm RepTree are giving promising results in comparison with other classification algorithms.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jayashri V. Shinde ◽  
Yashwant V. Joshi ◽  
Ramchandra R. Manthalkar ◽  
Joshi

Abstract Objectives Intervertebral disc segmentation is one of the methods to diagnose spinal disease through the degeneration in asymptomatic and symptomatic patients. Even though numerous intervertebral disc segmentation techniques are available, classifying the grades in the intervertebral disc is a hectic challenge in the existing disc segmentation methods. Thus, an effective Whale Spine-Generative Adversarial Network (WSpine-GAN) method is proposed to segment the intervertebral disc for effective grade classification. Methods The proposed WSpine-GAN method effectively performs the disc segmentation, wherein the weights of Spine-GAN are optimally tuned using Whale Optimization Algorithm (WOA). Then, the refined disc features, such as pixel-based features and the connectivity features are extracted. Finally, the K-Nearest Neighbor (KNN) classifier based on the pfirrmann’s grading system performs the grade classification. Results The implementation of the grade classification strategy based on the proposed WSpine-GAN and KNN is performed using the real-time database, and the performance based on the metrics yielded the accuracy, true positive rate (TPR), and false positive rate (FPR) values of 97.778, 97.83, and 0.586% for the training percentage and 92.382, 90.580, and 1.972% for the K-fold value. Conclusions The proposed WSpine-GAN method effectively performs the disc segmentation by integrating the Spine-GANmethod and WOA. Here, the spinal cord images are segmented using the proposed WSpine-GAN method by tuning the weights optimally to enhance the performance of the disc segmentation.


2020 ◽  
Vol 5 (7) ◽  
pp. 61 ◽  
Author(s):  
Nicholas Fiorentini ◽  
Massimo Losa

Crash severity is undoubtedly a fundamental aspect of a crash event. Although machine learning algorithms for predicting crash severity have recently gained interest by the academic community, there is a significant trend towards neglecting the fact that crash datasets are acutely imbalanced. Overlooking this fact generally leads to weak classifiers for predicting the minority class (crashes with higher severity). In this paper, in order to handle imbalanced accident datasets and provide a better prediction for the minority class, the random undersampling the majority class (RUMC) technique is used. By employing an imbalanced and a RUMC-based balanced training set, we propose the calibration, validation, and evaluation of four different crash severity predictive models, including random tree, k-nearest neighbor, logistic regression, and random forest. Accuracy, true positive rate (recall), false positive rate, true negative rate, precision, F1-score, and the confusion matrix have been calculated to assess the performance. Outcomes show that RUMC-based models provide an enhancement in the reliability of the classifiers for detecting fatal crashes and those causing injury. Indeed, in imbalanced models, the true positive rate for predicting fatal crashes and those causing injury spans from 0% (logistic regression) to 18.3% (k-nearest neighbor), while for the RUMC-based models, it spans from 52.5% (RUMC-based logistic regression) to 57.2% (RUMC-based k-nearest neighbor). Organizations and decision-makers could make use of RUMC and machine learning algorithms in predicting the severity of a crash occurrence, managing the present, and planning the future of their works.


2021 ◽  
Author(s):  
Prasannavenkatesan Theerthagiri ◽  
Usha Ruby A ◽  
Vidya J

Abstract Diabetes mellitus is characterized as a chronic disease may cause many complications. The machine learning algorithms are used to diagnosis and predict the diabetes. The learning based algorithms plays a vital role on supporting decision making in disease diagnosis and prediction. In this paper, traditional classification algorithms and neural network based machine learning are investigated for the diabetes dataset. Also, various performance methods with different aspects are evaluated for the K-nearest neighbor, Naive Bayes, extra trees, decision trees, radial basis function, and multilayer perceptron algorithms. It supports the estimation on patients suffering from diabetes in future. The results of this work shows that the multilayer perceptron algorithm gives the highest prediction accuracy with lowest MSE of 0.19. The MLP gives the lowest false positive rate and false negative rate with highest area under curve of 86 %.


2021 ◽  
Author(s):  
Prasannavenkatesan Theerthagiri ◽  
Usha Ruby A ◽  
Vidya J

Abstract Diabetes mellitus is characterized as a chronic disease may cause many complications. The machine learning algorithms are used to diagnosis and predict the diabetes. The learning based algorithms plays a vital role on supporting decision making in disease diagnosis and prediction. In this paper, traditional classification algorithms and neural network based machine learning are investigated for the diabetes dataset. Also, various performance methods with different aspects are evaluated for the K-nearest neighbor, Naive Bayes, extra trees, decision trees, radial basis function, and multilayer perceptron algorithms. It supports the estimation on patients suffering from diabetes in future. The results of this work shows that the multilayer perceptron algorithm gives the highest prediction accuracy with lowest MSE of 0.19. The MLP gives the lowest false positive rate and false negative rate with highest area under curve of 86 %.


2021 ◽  
Author(s):  
Masoud Abdan ◽  
Seyed Amin Hosseini Seno

Abstract A wormhole attack is a type of attack on the network layer which reflects the issue of routing protocols. The classification is performed with several methods of machine learning consisting of K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Tree (DT), Linear Discrimination Analysis (LDA), Naive Bayes (NB), and Convolutional neural network (CNN). Moreover, for feature extraction, we used the properties of nodes, especially nodes speed in the MANET. We have collected 3997 distinct (normal 3781 and malicious 216) samples that comprise normal and malicious samples. Results of the classification show that the accuracy of KNN, SVM, DT, LDA, NB, and CNN methods are 97.1%, 98.2%, 98.9%, 95.2%, 94.7%, and 96.4%, respectively. Based on our findings, the DT method's accuracy is 98.9% and higher than other methods. In the next priority, SVM, KNN, CNN, LDA, and NB indicate high accuracy, respectively.


2019 ◽  
Vol 20 (5) ◽  
pp. 488-500 ◽  
Author(s):  
Yan Hu ◽  
Yi Lu ◽  
Shuo Wang ◽  
Mengying Zhang ◽  
Xiaosheng Qu ◽  
...  

Background: Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world&#039;s highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. </P><P> Objective: In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. </P><P> Results: Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. </P><P> Conclusion: This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.


Author(s):  
M. Ilayaraja ◽  
S. Hemalatha ◽  
P. Manickam ◽  
K. Sathesh Kumar ◽  
K. Shankar

Cloud computing is characterized as the arrangement of assets or administrations accessible through the web to the clients on their request by cloud providers. It communicates everything as administrations over the web in view of the client request, for example operating system, organize equipment, storage, assets, and software. Nowadays, Intrusion Detection System (IDS) plays a powerful system, which deals with the influence of experts to get actions when the system is hacked under some intrusions. Most intrusion detection frameworks are created in light of machine learning strategies. Since the datasets, this utilized as a part of intrusion detection is Knowledge Discovery in Database (KDD). In this paper detect or classify the intruded data utilizing Machine Learning (ML) with the MapReduce model. The primary face considers Hadoop MapReduce model to reduce the extent of database ideal weight decided for reducer model and second stage utilizing Decision Tree (DT) classifier to detect the data. This DT classifier comprises utilizing an appropriate classifier to decide the class labels for the non-homogeneous leaf nodes. The decision tree fragment gives a coarse section profile while the leaf level classifier can give data about the qualities that influence the label inside a portion. From the proposed result accuracy for detection is 96.21% contrasted with existing classifiers, for example, Neural Network (NN), Naive Bayes (NB) and K Nearest Neighbor (KNN).


2021 ◽  
Vol 13 (5) ◽  
pp. 1021
Author(s):  
Hu Ding ◽  
Jiaming Na ◽  
Shangjing Jiang ◽  
Jie Zhu ◽  
Kai Liu ◽  
...  

Artificial terraces are of great importance for agricultural production and soil and water conservation. Automatic high-accuracy mapping of artificial terraces is the basis of monitoring and related studies. Previous research achieved artificial terrace mapping based on high-resolution digital elevation models (DEMs) or imagery. As a result of the importance of the contextual information for terrace mapping, object-based image analysis (OBIA) combined with machine learning (ML) technologies are widely used. However, the selection of an appropriate classifier is of great importance for the terrace mapping task. In this study, the performance of an integrated framework using OBIA and ML for terrace mapping was tested. A catchment, Zhifanggou, in the Loess Plateau, China, was used as the study area. First, optimized image segmentation was conducted. Then, features from the DEMs and imagery were extracted, and the correlations between the features were analyzed and ranked for classification. Finally, three different commonly-used ML classifiers, namely, extreme gradient boosting (XGBoost), random forest (RF), and k-nearest neighbor (KNN), were used for terrace mapping. The comparison with the ground truth, as delineated by field survey, indicated that random forest performed best, with a 95.60% overall accuracy (followed by 94.16% and 92.33% for XGBoost and KNN, respectively). The influence of class imbalance and feature selection is discussed. This work provides a credible framework for mapping artificial terraces.


Sign in / Sign up

Export Citation Format

Share Document