scholarly journals Mobility Management Techniques in 5G Wireless Networks

Current innovation in the field of Mobile and Wireless network will increase the use of mobile devices which procreated in an outburst of traffic passing through the internet. Due to the explosion of traffic mobility management has become a challenge in future mobile and wireless networks. To deal with such an explosion, mobile networks are becoming flatter as compared to previous hierarchical mobile networks. This paper presents a detailed survey of solutions for currently mobility management such as Centralized mobility management techniques for mobile and wireless networks, described the limitation of Centralized Mobility Management which is hierarchical and centralized in nature and discussed an approach which removes the limitation of Centralized mobility management called as Distributed mobility management. This paper also discussed two different approaches of Distributed mobility management such as Client based Distributed mobility management and Network based Distributed mobility management.

2016 ◽  
pp. 749-777
Author(s):  
Sulata Mitra

The next generation wireless networks will be heterogeneous wireless environments because of the coexistence of a large variety of wireless access technologies. The different networks have different architectures and protocols. So it is difficult for a user to roam from one radio system to another which can be solved by using the Internet protocol as a common interconnection protocol as it needs no assumptions about the characteristics of the underlying technologies. An all-IP wireless network is an IP-based wireless access system that makes wireless networks more robust, scalable, and cost effective. The nodes in such a network are mobile nodes as they change their location and point of attachment to the Internet frequently. The mobility management is an important research issue in an all-IP wireless network for providing seamless roaming facility to mobile nodes from one wireless system to another. The dynamic resource management is also required in this environment to ensure sufficient resource in the selected route for transmission or reception of the data packets during seamless roaming of the mobile nodes. This chapter is aimed at the researchers and the policy makers making them aware of the different means of mobility management and resource management for mobile nodes in all-IP wireless networks.


Author(s):  
Sulata Mitra

The next generation wireless networks will be heterogeneous wireless environments because of the coexistence of a large variety of wireless access technologies. The different networks have different architectures and protocols. So it is difficult for a user to roam from one radio system to another which can be solved by using the Internet protocol as a common interconnection protocol as it needs no assumptions about the characteristics of the underlying technologies. An all-IP wireless network is an IP-based wireless access system that makes wireless networks more robust, scalable, and cost effective. The nodes in such a network are mobile nodes as they change their location and point of attachment to the Internet frequently. The mobility management is an important research issue in an all-IP wireless network for providing seamless roaming facility to mobile nodes from one wireless system to another. The dynamic resource management is also required in this environment to ensure sufficient resource in the selected route for transmission or reception of the data packets during seamless roaming of the mobile nodes. This chapter is aimed at the researchers and the policy makers making them aware of the different means of mobility management and resource management for mobile nodes in all-IP wireless networks.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Byungjoo Park ◽  
Ankyu Hwang ◽  
Haniph Latchman

Mobility management is an essential challenge for supporting reliable multimedia data streaming over wireless and mobile networks in the Internet of Things (IoT) for location-based mobile marketing applications. The communications among mobile nodes for IoT need to have a seamless handover for delivering high quality multimedia services. The Internet Engineering Task Force (IETF) mobility management schemes are the proposals for handling the routing of IPv6 packets to mobile nodes that have moved away from their home network. However, the standard mobility management scheme cannot prevent packet losses due to longer handover latency. In this article, a new enhanced data streaming route optimization scheme is introduced that uses an optimized Transmission Control Protocol (TCP) realignment algorithm in order to prevent the packet disordering problem whenever the nodes in the IoT environment are communicating with each other. With the proposed scheme, data packets sequence realignment can be prevented, the packet traffic speed can be controlled, and the TCP performance can be improved. The experimental results show that managing the packet order in proposed new scheme remarkably increases the overall TCP performance over mobile networks within the IoT environment thus ensuring the high quality of service (QoS) for multimedia data streaming in location-based mobile marketing applications.


Author(s):  
Gabriel PETRICĂ

Solutions that can be implemented to secure a LAN include firewalls and intrusion detection / prevention systems (IDS / IPS). For a wireless network, security is a challenge considering the specific elements of this type of network: the physical area from which the connection is possible, and the weaknesses of the protocols used for data encryption. This article presents a case study on the most widely used protocols (WEP, WPA and WPA2) to secure wireless networks and the methodology by which passwords can be decrypted using Kali Linux distribution - available for free on the Internet - and applications included in this operating system.


Author(s):  
Battulga Davaasambuu

The rapidly-growing number of mobile subscribers has led to the creation of a large number of signalling messages. This makes it difficult to efficiently handle the mobility of subscribers in mobile cellular networks. The long-term evolution (LTE) architecture provides software-defined networking (SDN) to meet the requirements of 5G networks and to forward massive mobile data traffic. The SDN solution proposes separation of the control and data planes of a network. Centralized mobility management (CMM) is widely used in current mobile network technologies, such as 4G networks. One of the problems related to CMM is a single point of failure. To solve the problems of CMM and in order to provide for efficient mobility management, IETF has developed a solution called distributed mobility management (DMM), in which mobility is handled via the nearest mobility anchor. In this paper, we propose a DMM solution with handover operations for SDN-enabled mobile networks. The advantage of the proposed solution is that intra and inter handover procedures are defined with the data buffering and forwarding processes between base stations and mobility anchors. We adopt a simulation model to evaluate and compare the proposed solution with the existing solution in terms of handover latency, packet loss and handover failures.


Author(s):  
Isaac Chin Eian ◽  
Ka Yong Lim ◽  
Majesty Xiao Li Yeap ◽  
Hui Qi Yeo ◽  
Fatima Z

In recent years, wireless networks have undoubtedly become a convenient way to connect to the Internet and provide connection to everyone in any corner of the world. In fact, in this era, people are connected to the internet almost everyday and wireless networks give us this privilege in a seamless manner. A wireless network normally consists of access points and nodes where the access points are responsible to amplify the wireless signals, while the nodes are the gadgets that are receiving these signals. However, with such great convenience provided, many challenges are also faced by the users and stakeholders. With no physical connection to devices, wireless networks are evidently more vulnerable to invisible cyber attacks. In this research paper, it the security issues that cause issues in the wireless networks are discussed. Furthermore, an analytical review of privacy challenges found in these networks is performed; these challenges are segregated into security issues and privacy issues. The paper will then present the methods used in conducting a survey and gathering the research results along with further discussion on the results obtained through this study. Finally, a suitable solution is proposed to prevent and overcome the intrusions faced in terms of security and privacy in wireless network scenarios through detection and response mechanism for mitigation of the problems.


Author(s):  
Paramesh C. Upadhyay ◽  
Sudarshan Tiwari

Mobility is a natural phenomenon in cellular networks. The worldwide popularity of mobile communications and Internet has necessitated the merger of the two fast growing technologies to get their fullest advantages. The Internet protocol (IP) was designed for static hosts only. Therefore, in order to add mobility in Internet, the Internet protocol needs to be redefined. This paper is intended to present an overview of various mobility management schemes, available in literature, for IP-based mobile networks.


2018 ◽  
Vol 17 ◽  
pp. 01013
Author(s):  
Dapeng Huangfu ◽  
Xiaoping Tian ◽  
Xingjian Wang ◽  
Ping Chen

With the rapid development of Internet +, the dependence on wireless networks and wireless terminals are increasing. Campus wireless network has become the main network of teachers and students in campus on the internet. As there are uneven clients and a wide variety of intelligent terminals now. Simplified authentication and network security become the most urgent problem for wireless network. This paper used the Portal + Mac authentication method to realize the non-cognitive authentication of teachers and students on basis of the analysis of the advantages and disadvantages of mainstream authentication of campus wireless network, such as 802.1X authentication, Portal authentication, Mac authentication and DHCP authentication. Teachers and students only need portal certification at the first time, then surf the internet with non-perceived authentication at the second time and later. This method increases network security, and is better to meet the needs of teachers and students.


Sign in / Sign up

Export Citation Format

Share Document