scholarly journals Structural & Thermal Analysis of the Dental Refurbishment Ingredients using FEA Application

Very little scientific information on dental renewables has recently been available. Before this experience, the utilization of these materials was entirely artistic, and the patient's mouth was the only testing laboratory. Today, despite the advanced technical devices and the improvement of consistent test methods for estimating the metallic and thermal properties of renewables, this test sometimes happens on the patient's mouth. The current work has considered, and compared, basic thermal & mechanical characteristic’s of some of the most commonly used restorative materials. The transport of these materials when they were used as a class I cup, mandibular 1st molar, was mixed under different thermal and structural strengths examining the use of ANSYS/work bench 15.0. Consideration was given to Amalgam materials, Composite/mixture, & gold alloy for this effort. The outcomes obtained from ANSYS indicated that the biggest update at the occlusal surface, particularly in the inflection, occurred and is rising to the other four (mesial, & buccal, & lingual & distal surfaces) characteristics & the roots, though Von-Mises was depicted on the cervical line/mark (a border between crown and roots) and spread to both crown & roots. There were 35 tests carried out and the values for the highest separation and von-Mises emphasis both against temperature and structure by using QTIPLOT software, and the final result shows that all values are the highest and highest concentrations of both re-fillers of gold and the mixed nutrients and of both deformation & von-Mises stresses respectively.

2007 ◽  
Vol 35 (2) ◽  
pp. 94-117 ◽  
Author(s):  
James A. Popio ◽  
John R. Luchini

Abstract This study compares data from the two Society of Automotive Engineers test methods for rolling resistance: J-2452 (Stepwise Coast-Down) and J-1269 (Equilibrium) steady state. The ability of the two methods to evaluate tires was examined by collecting data for 12 tires. The data were analyzed and the data showed that the two methods ranked the tires the same after the data were regressed and the rolling resistance magnitude was calculated at the Standard Reference Condition. In addition, analysis of the two methods using this matched set of testing provided an opportunity to evaluate each of these test standards against the other. It was observed that each test has merits absent from the other.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jingheng Shu ◽  
Quanyi Wang ◽  
Desmond Y.R. Chong ◽  
Zhan Liu

AbstractLoadings in temporomandibular joints (TMJs) are essential factors in dysfunction of TMJs, and are barely noticed in treatment of maxillofacial deformity. The only approach, which can access stresses in TMJs, could expend day’s even weeks to complete. The objective of the study was to compare the differences of the morphological and biomechanical characteristics of TMJs between asymptomatic subjects and patients with mandibular prognathism, and to preliminarily analyze the connection between the two kinds of characteristics. Morphological measurements and finite element analysis (FEA) corresponding to the central occlusion were carried out on the models of 13 mandibular prognathism patients and 10 asymptomatic subjects. The results indicated that the joint spaces of the patients were significantly lower than those of the asymptomatic subjects, while the stresses of patients were significantly greater than those of asymptomatic subjects, especially the stresses on discs. The results of Pearson correlation analysis showed that weak or no correlations were found between the von Mises stresses and the joint spaces of asymptomatic subjects, while moderate, even high correlations were found in the patients. Thus, it was shown to be a feasible way to use morphological parameters to predict the internal loads of TMJs.


Friction ◽  
2021 ◽  
Author(s):  
Longxiang Yang ◽  
Zhanjiang Wang ◽  
Weiji Liu ◽  
Guocheng Zhang ◽  
Bei Peng

AbstractThis work is a supplement to the work of Sneddon on axisymmetric Boussinesq problem in 1965 in which the distributions of interior-stress fields are derived here for a punch with general profile. A novel set of mathematical procedures is introduced to process the basic elastic solutions (obtained by the method of Hankel transform, which was pioneered by Sneddon) and the solution of the dual integral equations. These processes then enable us to not only derive the general relationship of indentation depth D and total load P that acts on the punch but also explicitly obtain the general analytical expressions of the stress fields beneath the surface of an isotropic elastic half-space. The usually known cases of punch profiles are reconsidered according to the general formulas derived in this study, and the deduced results are verified by comparing them with the classical results. Finally, these general formulas are also applied to evaluate the von Mises stresses for several new punch profiles.


e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Corrado Berti ◽  
Annamaria Celli ◽  
Paola Marchese ◽  
Elisabetta Marianucci ◽  
Giancarlo Barbiroli ◽  
...  

AbstractSome poly(alkylene dicarboxylate)s, derived from ethanediol or 1,4- butanediol and different diacids, have been synthesized and analyzed by DSC to determine the correlations existing between the thermal properties and the length of the aliphatic chain. The polymers show crystallization and melting temperatures and enthalpies which increase as the polymethylene segments lengthen, due to the formation of more stable crystals. The samples derived from ethanediol are peculiar; they show reorganization processes during the melting and the melting temperatures are notably higher with respect to those of the other polyesters. This behavior is discussed. Isothermal analysis highlights that poly(alkylene dicarboxylate)s are fast crystallizing polymers. The Avrami analysis suggests a crystallization mechanism characterized by heterogeneous nucleation and three dimensional growth; secondary crystallizations is present only in the samples characterized by short -(CH2)- sequences, due to the reorganization of less perfect crystalline forms. A comparative study between the crystallization rates as a function of the undercooling is reported.


2015 ◽  
Vol 820 ◽  
pp. 497-502 ◽  
Author(s):  
Danubia Lisbôa da Costa ◽  
Rosiane Maria da Costa Farias ◽  
Aluska Nascimento Simões Braga ◽  
Romualdo Rodrigues Menezes ◽  
Gelmires de Araujo Neves

Several years ago the study on modification of existing materials that have enhanced properties has gained prominence. In this scenario, the geopolymeric binders, currently widely used in the construction industry have emerged. Thus, this study aimed to evaluate the influence of alumina addition on the mechanical and thermal properties of metakaolin in geopolymer binder. The geopolymers were synthesized from mixtures of metakaolin/alumina and sodium hydroxide, pressed and characterized by diffraction of X-ray and differential thermal analysis and thermogravimetric. Two types of alumina were used in different amounts (14% and 7%) in order to evaluate the effect of the load binder obtained. It can be seen that the incorporation of alumina into the system caused an increase in strength of products obtained as well as a reduction in total mass loss of the sample , especially when the use of fine alumina.


2013 ◽  
Vol 703 ◽  
pp. 200-203
Author(s):  
Shao Biao Cai ◽  
Yong Li Zhao

This study presents a first attempt to develop a numerical three-dimensional multilayered (more than 2 composite layered coatings) elasticperfectly plastic rough solids model to investigate the contact behavior under combined normal loading and tangential traction. Contact analyses are performed to study the effects composite thin film layers. Local contact pressure profiles, von Mises stresses, and shear stresses as a function of material properties and applied normal and tangential friction loads are calculated.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Jun Fu ◽  
Ming Ni ◽  
Jiying Chen ◽  
Xiang Li ◽  
Wei Chai ◽  
...  

Purpose. The purpose of this study was to establish the finite element analysis (FEA) model of acetabular bone defect reconstructed by 3D printed Ti6Al4V augment and TM augment and further to analyze the stress distribution and clinical safety of augments, screws, and bones.Methods. The FEA model of acetabular bone defect reconstructed by 3D printed Ti6Al4V augment was established by the CT data of a patient with Paprosky IIIA defect. The von Mises stresses of augments, screws, and bones were analyzed by a single-legged stance loading applied in 3 increments (500 N, 2000 N, and 3000 N).Results. The peak von Mises stresses under the maximal loading in the 3D printed augments, screws, and cortical bone were less than the yield strength of the corresponding component. However, the peak stress in the bone was greater than the yield strength of cancellous bone under walking or jogging loading. And under the same loading, the peak compressive and shear stresses in bone contact with TM augment were larger than these with 3D printed augment.Conclusions. The FEA results show that all the components will be intact under single-legged standing. However, partial cancellous bone contacted with 3D printed augment and screws will lose efficacy under walking or jogging load. So we recommend that patients can stand under full bearing, but can not walk or jog immediately after surgery.


2011 ◽  
Vol 284-286 ◽  
pp. 1431-1434 ◽  
Author(s):  
Jin Rui Zhang ◽  
Ru Wang

In order to utilization the molybdenum tailings which be deposited in large quantities. Test used it to prepare glass-ceramics as main raw material, TiO2 as nucleation agents and CaO-Al2O3-SiO2 system and wollastonite as the principal crystalline phase. Heat treatment system of glass-ceramics was based on the differential thermal analysis. The crystalline phase, microstructure and characteristics of glass-ceramics were analysis by XRD, SEM and physical, chemical properties test. The result shows that the performance of glass-ceramics was superior to the other types of building decoration stone.


2017 ◽  
Vol 17 (04) ◽  
pp. 1750074
Author(s):  
MD ABU HASAN ◽  
PANOS S. SHIAKOLAS

This study compares the biomechanical behavior of a mandibular full-arch fixed implant prosthesis with four implants under lingualized and conventional balanced occlusion schemes. The acrylic resin denture was supported by four titanium cylindrical implants and connected via a titanium prosthetic rectangular bar. Orthotropic material was used for the cortical and cancellous bones. The applied loadings were vertical and bilateral: 100[Formula: see text]N on first molar and 50[Formula: see text]N on first and second premolars each. For the lingualized balanced occlusion, the loadings were applied in central fossae of the posterior teeth, whereas for the conventional balanced occlusion the loadings were applied in central fossae and buccal cusps. The maximum von-Mises stresses for the lingualized and conventional balanced schemes were 301[Formula: see text]MPa and 25[Formula: see text]MPa, respectively, and were located at the neck of the posterior implants. In the denture teeth, the highest stress was located at the beginning of the cantilever extension. In the cortical bone, according to Tsai–Wu criterion, the failure index for the lingualized balanced occlusion was 1.10 and for the conventional balanced occlusion was 0.83. Thus, the conventional balanced occlusion demonstrated more favorable stress distribution in the implants and the cortical bone than the lingualized balanced occlusion.


Sign in / Sign up

Export Citation Format

Share Document