scholarly journals Heterogeneous Networks in 5g using Joint Path Selection and Rate Allocation Framework

One of the major challenges in evolving wireless cellular networks whose return network is constrained by capability and heterogeneity (wired, wireless, and hybrid) is the design of distributed management mechanism. This study proposes a new method of managing wireless network interference with the ability to detect return network. The proposed approach helps Macro-cell User Equipment (MUE) to maximize its output using adjacent small cell base stations to maximize its uplink. Considering the radio access network and backhaul (possibly heterogeneous), this issue is represented as a non-cooperative game between MUE that attempts to maximize its compensation for delay levels. A new distributed learning algorithm is proposed to solve this problem, which uses the algorithm to autonomously choose the best uplink transmission strategy, provided a limited amount of available knowledge. The algorithm's convergence is demonstrated, and its output is studied. The simulation results show that, in comparison to the existing reference algorithm, The proposed approach has substantial efficiency benefits for various forms of backhaul in terms of average output and delay in MUE.

Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1412 ◽  
Author(s):  
B. Bikram Kumar ◽  
Lokesh Sharma ◽  
Shih-Lin Wu

Future-generation radio access networks (RAN) are projected to fulfill the diverse requirements of user equipment (UE) by adopting a heterogeneous network (HetNet) environment. Necessary integration of different radio access technologies (RAT), such as 2G, 3G, 4G, wireless local area network (WLAN), and visible light communication (VLC) is inevitable. Moreover, UEs equipped with diverse requirements will be capable of accessing some or all the RATs. The complex HetNet environment with diverse requirements of UEs will present many challenges. The HetNet is likely to suffer severely from load imbalance among the base stations (BSs) from inheriting the traditional user association scheme such as max-SINR (signal-to-interference-plus-noise ratio)/max-RSSI (received signal strength indicator), unless some sophisticated schemes are invented. In this paper, a novel scheme is devised for a joint-user association for load balancing, where BSs are densely deployed and UEs typically have a certain degree of mobility. Unlike most of the present works, a dynamic network is considered where the position and channel condition of the UEs are not fixed. We develop two complex and distributed association schemes based on probability and d-choices, while carefully considering both loads of the BSs and SINR experienced by the UEs. Numerical results validate the efficiency of the proposed schemes by showing a received data-rate fairness among UEs and an improvement in the UE’s minimum received data rate.


2020 ◽  
Vol 12 (6) ◽  
pp. 2497 ◽  
Author(s):  
Mashael Khayyat ◽  
Abdullah Alshahrani ◽  
Soltan Alharbi ◽  
Ibrahim Elgendy ◽  
Alexander Paramonov ◽  
...  

With the recent advances and development of autonomous control systems of cars, the design and development of reliable infrastructure and communication networks become a necessity. The recent release of the fifth-generation cellular system (5G) promises to provide a step towards reliability or a panacea. However, designing autonomous vehicle networks has more requirements due to the high mobility and traffic density of such networks and the latency and reliability requirements of applications run over such networks. To this end, we proposed a multilevel cloud system for autonomous vehicles which was built over the Tactile Internet. In addition, base stations at the edge of the radio-access network (RAN) with different technologies of antennas are used in our system. Finally, simulation results show that the proposed system with multilevel clouding can significantly reduce the round-trip latency and the network congestion. In addition, our system can be adapted in the mobility scenario.


Telecom IT ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 35-59
Author(s):  
G. Fokin

In this paper, we investigate the dependence of the level of intersystem interference on the beam width of the adaptively formed antenna radiation pattern and the territorial separation of neighboring devices in ultra-dense 5G radio access networks. The results of simulation modeling of a radio access network based on 19 base stations with the parameterization of the antenna array gain by the width of the radiation pattern in the horizontal plane show that when the base station beam is di-rected to the user device and narrowed from 360° to 5°, the level of intrasystem interference decreases by 15 dB compared with the case of omnidirectional antennas. The results of simulation of a radio access network based on 19 three-sector base stations with planar antenna arrays of 64 elements illustrate a significant reduction in the level of interference in comparison with the case of omnidirectional antennas and, in order to obtain zones of a positive signal-to-noise ratio, confirm the need for a territorial separation of neighboring devices by 10–20 % of the range of radio coverage.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Fan Jia ◽  
Xiaolin Zheng

With the developing of 5G, it is widely accepted that 5G will use a system architecture that supports the ultradense networks (UDN) deployments. In this architecture, a user will be covered by a large amount of small cell base stations (SBS) in 5G. However, selecting an SBS for handover is a great challenge. To address the challenge, the emerging content-oriented Named Data Networking (NDN) has attractive advantages, such as providing name-based routing. In this paper, a request-based handover strategy (RBHS) is presented to improve the user experience in performance and obtain the optimal allocation of resources, and a caching mechanism based on the users’ requests is introduced for it. The proposed caching mechanism and access network selection mechanism were validated utilizing ndnSIM. Simulation results demonstrate that our proposed strategy achieves around 30% higher cache hit rate and 20% more traffic reduction, compared with the access network selection based on SINR.


Author(s):  
Shaik Mazhar Hussain ◽  
Kamaludin Mohamad Yusof ◽  
Rolito Asuncion ◽  
Shaik Ashfaq Hussain

Internet of vehicles (IoV) is an emerging area that gives support for vehicles via internet assisted communication. IoV with 5G provides ubiquitous connectivity due to the participation of more than one radio access network. The mobility of vehicles demands to make handover in such heterogeneous network. The vehicles at short range uses dedicated short range communication (DSRC), while it has to use better technology for long range and any type of traffic. Usually, the previous work will directly select the network for handover or it connects with available radio access. Due to this, the occurrence of handover takes place frequently.  In this paper, the integration of DSRC, LTE and mmWave 5G on IoV is incorporated with novel handover decision making, network selection and routing. The handover decision is to ensure whether there is a need for vertical handover by using Dynamic Q-learning algorithm that uses entropy function for threshold prediction as per the current characteristics of the environment. Then the network selection is based on fuzzy-convolution neural network (F-CNN) that creates fuzzy rules from signal strength, distance, vehicle density, data type and line of sight. V2V chain routing is proposed to select V2V pairs using jellyfish optimization algorithm (JOA) that takes in account of channel, vehicle and transmission metrics. This system is developed in OMNeT++ simulator and the performances are evaluated in terms of success probability, handover failure, unnecessary handover, mean throughput, delay and packet loss.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Qi Liu ◽  
Rongyi Hu ◽  
Shan Liu

Personal location technologies are becoming important with the rapid development of Mobile Internet services. In traditional cellular networks, the key problems of user location technologies are high-precision synchronization among different base stations, inflexible processing resources, and low accuracy positioning, especially for indoor environment. In this paper, a new LTE location system in Centralized Radio Access Network (C-RAN) is proposed, which makes channel and location measurement more available, allocation of baseband processing resources more flexible, and location service capability opening. The location system contains more than two antenna clusters, and each of them gets time-difference-of-arrival (TDOA) of sounding reference signals (SRSs) from different antennas. Then, based on data provided by location measurement units (LMUs), the location information server calculates TDOAs and derives the users’ position. Furthermore, a new location algorithm is raised which can achieve distributed antennas collaboration and centralized location computing. And an improved optimized algorithm with the best TDOA selection is proposed. Finally, simulations are given out to verify the efficiency of the proposed algorithm in this LTE location system.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 255
Author(s):  
Josip Lorincz ◽  
Zonimir Klarin

As the rapid growth of mobile users and Internet-of-Everything devices will continue in the upcoming decade, more and more network capacity will be needed to accommodate such a constant increase in data volumes (DVs). To satisfy such a vast DV increase, the implementation of the fifth-generation (5G) and future sixth-generation (6G) mobile networks will be based on heterogeneous networks (HetNets) composed of macro base stations (BSs) dedicated to ensuring basic signal coverage and capacity, and small BSs dedicated to satisfying capacity for increased DVs at locations of traffic hotspots. An approach that can accommodate constantly increasing DVs is based on adding additional capacity in the network through the deployment of new BSs as DV increases. Such an approach represents an implementation challenge to mobile network operators (MNOs), which is reflected in the increased power consumption of the radio access part of the mobile network and degradation of network energy efficiency (EE). In this study, the impact of the expected increase of DVs through the 2020s on the EE of the 5G radio access network (RAN) was analyzed by using standardized data and coverage EE metrics. An analysis was performed for five different macro and small 5G BS implementation and operation scenarios and for rural, urban, dense-urban and indoor-hotspot device density classes (areas). The results of analyses reveal a strong influence of increasing DV trends on standardized data and coverage EE metrics of 5G HetNets. For every device density class characterized with increased DVs, we here elaborate on the process of achieving the best and worse combination of data and coverage EE metrics for each of the analyzed 5G BSs deployment and operation approaches. This elaboration is further extended on the analyses of the impact of 5G RAN instant power consumption and 5G RAN yearly energy consumption on values of standardized EE metrics. The presented analyses can serve as a reference in the selection of the most appropriate 5G BS deployment and operation approach, which will simultaneously ensure the transfer of permanently increasing DVs in a specific device density class and the highest possible levels of data and coverage EE metrics.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3342 ◽  
Author(s):  
German Castellanos ◽  
Margot Deruyck ◽  
Luc Martens ◽  
Wout Joseph

Today’s wireless networks provide us reliable connectivity. However, if a disaster occurs, the whole network could be out of service and people cannot communicate. Using a fast deployable temporally network by mounting small cell base stations on unmanned aerial vehicles (UAVs) could solve the problem. Yet, this raises several challenges. We propose a capacity-deployment tool to design the backhaul network for UAV-aided networks and to evaluate the performance of the backhaul network in a realistic scenario in the city center of Ghent, Belgium. This tool assigns simultaneously resources to the ground users—access network—and to the backhaul network, taking into consideration backhaul capacity and power restrictions. We compare three types of backhaul scenarios using a 3.5 GHz link, 3.5 GHz with carrier aggregation (CA) and the 60 GHz band, considering three different types of drones. The results showed that an optimal UAV flight height (80 m) could satisfy both access and backhaul networks; however, full coverage was difficult to achieve. Finally, we discuss the influence of the flight height and the number of requesting users concerning the network performance and propose an optimal configuration and new mechanisms to improve the network capacity, based on realistic restrictions.


Author(s):  
Mohammed Abbas Waheed ◽  
Azzad Bader Saeed ◽  
Thanaa Hussein Abd

The rapid growth of both mobile users and application numbers has caused a huge load on the core network (CN). This is attributed to the large numbers of control messages circulating between CN entities for each communication or service request, however, making it imperative to develop innovative designs to handle this load. Consequently, a variety of proposed architectures, including a software defined network (SDN) paradigm focused on the separation of control and data plans, have been implemented to make networks more flexible. Cloud radio access network (C-RAN) architecture has been suggested for this purpose, which is based on separating base band units (BBU) from several base stations and assembling these in one place. In this work, a novel approach to realize this process is based on SDN and C-RAN, which also distributes the control elements of the CN and locates them alongside the BBU to obtain the lowest possible load. The performance of this proposed architecture was evaluated against traditional architecture using MATLAB simulation, and. the results of this assessment indicated a major reduction in signalling load as compared to that seen in the traditional architecture. Overall, the number of signalling messages exchanged between control entities was decreased by 53.19 percent as compared to that seen in the existing architecture.


Sign in / Sign up

Export Citation Format

Share Document