scholarly journals Analytical Assessment on the Structural Behaviour of CFST and CFDST Short Columns using Ansys

2020 ◽  
Vol 9 (1) ◽  
pp. 2505-2510

Composite sections are much of the time used in structures on account of the straightforwardness and speed of erection, and prevalent in fire situation. In concrete consumed chambers the unfilled space is either filled by plain concrete or fortified concrete. In order to decrease the dead weight of composite portions and to assemble the detainment and toughness of the Concrete In-Filled Double Skinned Steel Tubular (CFDST) fragments were grasped. Two reference models, for instance, Concrete Filled Steel Tube (CFST) and Concrete In-Filled Double Skin Steel Tubes (CFDST) were endorsed and were used as references for the parametric examination. The game plan of furrowed steel plates is to improve the bond quality between the strong and the steel tubes and to manufacture the store passing on cutoff of the fragment. The parameters considered in the examination consolidated the strong assessment, thickness of the steel plate and steel grade. The composite structure under scrutiny was impersonated with a tri dimensional numerical model using the ANSYS programming, which relies upon the Finite Element Method (FEM). Examination were done reliant on the center point compressive weight. Examination of the results provoked the assurance that changing a single parameter didn't assemble as far as possible considering the way that the failure was moved to other essential parts in the composite sectionThe decisive results got from the examination of composite portion are improvement or abatement breaking point of fragment that influences the nature of the area in view of changes in the material properties. Sort of composite fragment is included to consider for feasibly picked as building structure. Finally, the stack passing on cutoff of the wrinkled composite sections are higher than the sustained fragment

Author(s):  
Fábio Masini Rodrigues ◽  
Armando Lopes Moreno Júnior ◽  
Jorge Munaiar Neto

Abstract The increase in temperature reduces the strength of steel and concrete, in such a way that it is essential to verify concrete-filled steel tube columns in fire situations. Numerical simulations, with lower costs than laboratory tests, have great importance in checking resistance and defining simplified methods for design practice. However, peculiarities of the thermal and mechanical behavior of heated confined concrete and the air-gap effect (a phenomenon inherent to concrete-filled steel columns) must still be better understood. Therefore, this study presents the development of a numerical model performed in the ABAQUS software (Dassault Systemes SIMULIA Corp., 2014) for the thermomechanical analysis of short columns composed of circular and square concrete-filled steel tubes considering the air-gap effect. The air-gap phenomenon is presented and analyzed according to possibilities of implementation to the numerical model and, finally, the proposed numerical model is validated with experimental results presented in the literature. According to the study results, the numerical model can be used to define and adjust simplified methods for verification of composite columns in fire situation. The importance of considering the air-gap effect in numerical modeling was confirmed, taking into account that disregarding its effect may result in overestimated responses of the steel tube resistance in fire situations. Moreover, it was suggested thermomechanical joint analysis and the use of the explicit solver as a strategy to minimize processing time.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1434
Author(s):  
Muhammmad Faisal Javed ◽  
Haris Rafiq ◽  
Mohsin Ali Khan ◽  
Fahid Aslam ◽  
Muhammad Ali Musarat ◽  
...  

This experimental study presents concrete-filled double-skin tubular columns and demonstrates their expected advantages. These columns consist of an outer steel tube, an inner steel tube, and concrete sandwiched between two tubes. The influence of the outer-to-inner tube dimension ratio, outer tube to thickness ratio, and type of inner tube material (steel, PVC pipe) on the ultimate axial capacity of concrete-filled double-skin tubular columns is studied. It is found that the yield strength of the inner tube does not significantly affect the ultimate axial capacity of concrete-filled double-skin tubular composites. With the replacement of the inner tube of steel with a PVC pipe, on average, less than 10% strength is reduced, irrespective of size and dimensions of the steel tube. Hence, the cost of a project can be reduced by replacing inner steel tubes with a PVC pipes. Finally, the experimental results are compared with the existing design methods presented in AISC 360-16 (2016), GB51367 (2019), and EC4 (2004). It is found from the comparison that GB51367 (2019) gives better results, followed by AISC (2016) and EC4 (2004).


2020 ◽  
Vol 1 (2) ◽  
pp. 12-23
Author(s):  
Orhan Doğan

Double skin composite (DSC) construction consists of a layer of a plain concrete, sandwiched between two layers of relatively thin steel plate, connected to the concrete by welded stud shear connectors. This construction acts in a similar way to doubly reinforced concrete elements but the flexibility of connection between the steel plates and concrete gives rise to interface slip and additional overall element deflection. This results in a strong and efficient structure with certain potential advantages over conventional forms of construction. This paper presents a theoretical analysis of the behavior of simply supported single span DSC beams, assuming both full and partial interaction. The partial interaction analysis takes into account the flexibility of connection on both tension and compression faces. The partial interaction analysis is extended to cover the influence of frictional forces between the concrete and external steel plates, at the supports and load points. The theoretical solutions based on partial interaction theory, assuming realistic material and shear connector properties and incorporating the influence of interface frictional forces between the concrete and external steel plates, at the supports and load points, are compared with the results of tests on DSC beams. It is concluded that the proposed method shows good correlation with real behavior and may be reliably used for the analysis of simply supported single span DSC beams.


2021 ◽  
Vol 227 ◽  
pp. 111416
Author(s):  
Tuan Trung Le ◽  
Vipulkumar Ishvarbhai Patel ◽  
Qing Quan Liang ◽  
Phat Huynh

2014 ◽  
Vol 488-489 ◽  
pp. 374-376
Author(s):  
Bing Wang ◽  
Lu Ma ◽  
Xiao Liu

Concrete filled double skin steel tubes which is developed on the basis of concrete filled steel tube, it is a new member. Combination of Chinese and foreign literature, this paper comprehensively discusses the research results about concrete filled double skin steel tubes member, then put forward the further research work, for concrete filled double skin steel tubes structure in deeply study to play a guiding role.


2021 ◽  
Vol 11 (20) ◽  
pp. 9469
Author(s):  
Xiaojuan Li ◽  
Guoliang Dai ◽  
Xueying Yang ◽  
Qian Yin ◽  
Wenbo Zhu ◽  
...  

Few studies, especially those related to field tests, have examined the bending behaviors of drilled shafts with partial casings (DSPCs). This work reports the results of experimental studies on the behavior of DSPCs under lateral loads, including an in situ test and a set of laboratory tests. First, a DSPC with a diameter of 2 m and length of 87.9 m was studied in clay beds, and a steel casing with a diameter of 2.0 m and length of 33 m was used. In this test, strain gauges were distributed along the steel rebars in the concrete pile and the wall of the steel tube at different depths, and thus the longitudinal strains of the concrete pile and the steel tube could be studied. Second, laboratory experiments were implemented with reinforced concrete-filled steel tubular columns under pure bending conditions. In these tests, strain gauges were distributed along the steel rebars in the concrete pile and the walls of the steel tubes at the pure bending section of the specimens. Different wall thicknesses and drilling fluid conditions were considered. The field test results show that the strain of the concrete piles and the steel tubes were linearly distributed at the same cross-section. This means that a DSPC remains a flat plane after it deforms. Whereas a correction coefficient related to the loading level need to be considered in the calculation of the bending stiffness. Laboratory studies show that the strain of DSPCs was linearly distributed at a small bending moment under the best bond-quality condition, whereas obvious nonlinear behaviors were shown under a large bending moment with poor bond-quality conditions.


Author(s):  
Karthik N Ganiga ◽  
Ibrahim Mahzeen ◽  
Mohammed Safan ◽  
Shaikh Fazil M U ◽  
Shilpa S

In recent years, a large number of studies have been carried out to investigate the behaviours of concrete filled double skin steel tube (CFDST) members due to its increasing popularity in the construction industry. This project aims to study on ultra-high performance concrete filled double-skin tubes subjected to blast loading with cross section being square for both inner and outer steel tubes using ANSYS software. It is evident that the proposed CFDST column was able to withstand a large blast load without failure so that it has the potential to be used in high-value buildings as well as critical infrastructures. The steel tubes and concrete work together well and integrity of steel concrete interface is maintained. Steel tubes in inner and outer can acts as permanent formwork and primary reinforcement. ANSYS results shows that the CFDA column can withstand applied blast load.


2020 ◽  
Vol 13 (3) ◽  
pp. 167-174
Author(s):  
Kareem Mohamed Alnebhan ◽  
Muhaned A. Shallal

In this study, three specimens of Warren truss girders composite with concrete deck slab were tested experimentally under a central monotonic load to study the effect of the existence of concrete inside the chords. The load capacity, deflection, slip between the concrete slab and steel tube, and failure modes were reported. Both chords were filled with concrete to the first specimen, only the lower chord was filled with concrete and the upper chord remained hollow to the second specimen and both chords were kept hollow in the third specimen. The result indicated that the existence of concrete inside the chords has a significant effect on the load capacity, failure pattern, and the slip. The steel tubes of the upper chord filled by concrete prevent surface plasticity failure of the upper chord under loading and increase the ultimate load by 6.68 %. Also, filling the lower chord with concrete prevents the surface plasticity failure in the supports zone and caused an increase in the ultimate load by 39.59 %. The slip at the end of the specimen of two chords filled with concrete is less by 71% than the end slip of specimen of hollow top chord and higher by 46.8 % than the specimen of two hollow chords.


Author(s):  
Ehsan Nikbakht ◽  
Nur Illia Shuhadah ◽  
Ramanathan A/L Ganapathy ◽  
Shukanthi A/P Subramaniam ◽  
Nabilah Abu Bakar

Sign in / Sign up

Export Citation Format

Share Document