scholarly journals Experimental Evaluation of the Bending Behavior of a Drilled Shaft with Partial Casing under Lateral Loads

2021 ◽  
Vol 11 (20) ◽  
pp. 9469
Author(s):  
Xiaojuan Li ◽  
Guoliang Dai ◽  
Xueying Yang ◽  
Qian Yin ◽  
Wenbo Zhu ◽  
...  

Few studies, especially those related to field tests, have examined the bending behaviors of drilled shafts with partial casings (DSPCs). This work reports the results of experimental studies on the behavior of DSPCs under lateral loads, including an in situ test and a set of laboratory tests. First, a DSPC with a diameter of 2 m and length of 87.9 m was studied in clay beds, and a steel casing with a diameter of 2.0 m and length of 33 m was used. In this test, strain gauges were distributed along the steel rebars in the concrete pile and the wall of the steel tube at different depths, and thus the longitudinal strains of the concrete pile and the steel tube could be studied. Second, laboratory experiments were implemented with reinforced concrete-filled steel tubular columns under pure bending conditions. In these tests, strain gauges were distributed along the steel rebars in the concrete pile and the walls of the steel tubes at the pure bending section of the specimens. Different wall thicknesses and drilling fluid conditions were considered. The field test results show that the strain of the concrete piles and the steel tubes were linearly distributed at the same cross-section. This means that a DSPC remains a flat plane after it deforms. Whereas a correction coefficient related to the loading level need to be considered in the calculation of the bending stiffness. Laboratory studies show that the strain of DSPCs was linearly distributed at a small bending moment under the best bond-quality condition, whereas obvious nonlinear behaviors were shown under a large bending moment with poor bond-quality conditions.

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Chengzhi Wang ◽  
Xin Liu ◽  
Pengfei Li

The findings of an experimental study that was undertaken to investigate the performance of concrete-filled steel tubular members subjected to lateral loads are reported in this study. Columns of pure concrete, concrete with reinforcing bars, and two steel tube thicknesses were considered. Two different tests were conducted in this study. One test is used to research the performance of steel tube-reinforced concrete model piles under a lateral loading. The other test is used to research the effect of the depth of rock embedment for piles embedded in a foundation to simulate actual engineering applications in an experimental study. According to these test results, a detailed analysis was carried out on the relationships, such as the stress-strain and load-displacement relationships for the specimen. These tests show that the steel tube thickness and steel bars will significantly enhance the lateral bearing capacity and rigidity of the composite components. Additionally, the ultimate bending moment formula of a steel tube-reinforced concrete pile is deduced. The comparison of the calculated results with the experimental results shows that this formula is applicable for this type of pile foundation.


2020 ◽  
Vol 9 (1) ◽  
pp. 2505-2510

Composite sections are much of the time used in structures on account of the straightforwardness and speed of erection, and prevalent in fire situation. In concrete consumed chambers the unfilled space is either filled by plain concrete or fortified concrete. In order to decrease the dead weight of composite portions and to assemble the detainment and toughness of the Concrete In-Filled Double Skinned Steel Tubular (CFDST) fragments were grasped. Two reference models, for instance, Concrete Filled Steel Tube (CFST) and Concrete In-Filled Double Skin Steel Tubes (CFDST) were endorsed and were used as references for the parametric examination. The game plan of furrowed steel plates is to improve the bond quality between the strong and the steel tubes and to manufacture the store passing on cutoff of the fragment. The parameters considered in the examination consolidated the strong assessment, thickness of the steel plate and steel grade. The composite structure under scrutiny was impersonated with a tri dimensional numerical model using the ANSYS programming, which relies upon the Finite Element Method (FEM). Examination were done reliant on the center point compressive weight. Examination of the results provoked the assurance that changing a single parameter didn't assemble as far as possible considering the way that the failure was moved to other essential parts in the composite sectionThe decisive results got from the examination of composite portion are improvement or abatement breaking point of fragment that influences the nature of the area in view of changes in the material properties. Sort of composite fragment is included to consider for feasibly picked as building structure. Finally, the stack passing on cutoff of the wrinkled composite sections are higher than the sustained fragment


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiang Li ◽  
Tao Yang ◽  
Yongbing Zhang ◽  
Yun Zhang ◽  
Taosheng Shen

Steel-concrete composite beams with corrugated steel webs (CSWs) usually have concrete flanges that are prone to crack under tension, and an innovative posttensioned composite beam (IPCB) with CSWs has been proposed previously to overcome this shortcoming. Here, an IPCB with CSWs is manufactured and submitted to a flexural test to investigate its flexural behavior, based on which finite element (FE) models with different parameters are developed and analyzed using the ANSYS software. The effects of the span-to-depth ratio, concrete compressive strength, initial effective prestress, width of the upper concrete flange, and yield strength of the steel tubes on the flexural behavior of the IPCBs with CSWs are discussed. Numerical results show that the span-to-depth ratio of the beam and the yield strength of the steel tube have a considerable effect on the ultimate load-carrying capacity of the IPCB, which increases by 48.2% when the depth of the CSWs is increased from 240 to 400 mm and by 21.8% when the yield strength of the steel tubes is increased from 295 to 395 MPa. The plane-section assumption is unsuitable for IPCBs. Almost all the unbonded posttensioning strands in the beams yield for the specimens at ultimate state. The normal stress is distributed unevenly across the width of the upper concrete flange, and the maximum shear lag coefficient is 1.17. Based on the numerical results, a calculation method is established to evaluate the bending moment resistance of an IPCB with CSWs. Comparison shows that the theoretical results in accordance with the proposed method agree well with the numerical results.


1976 ◽  
Vol 43 (1) ◽  
pp. 112-116 ◽  
Author(s):  
L. B. Freund ◽  
G. Herrmann

The dynamic fracture response of a long beam of brittle elastic material subjected to pure bending is studied. If the magnitude of the applied bending moment is increased to a critical value, a crack will propagate from the tensile side of the beam across a cross section. An analysis is presented by means of which the crack length and bending moment at the fracturing section are determined as functions of time after fracture initiation. The main assumption on which the analysis rests is that, due to multiple reflections of stress waves across the thickness of the beam, the stress distribution on the prospective fracture plane ahead of the crack may be adequately approximated by the static distribution appropriate for the instantaneous crack length and net section bending moment. The results of numerical calculations are shown in graphs of crack length, crack tip speed, and fracturing section bending moment versus time. It is found that the crack tip accelerates very quickly to a speed near the characteristic terminal speed for the material, travels at this speed through most of the beam thickness, and then rapidly decelerates in the final stage of the process. The results also apply for plane strain fracture of a plate in pure bending provided that the value of the elastic modulus is appropriately modified.


2013 ◽  
Vol 671-674 ◽  
pp. 833-837
Author(s):  
Yang Wen ◽  
Fei Zhou

In order to discuss the failure mechanism of concrete filled steel tube lattice wind generator tower joints. Based on the parameters of web member section form, and using nonlinear static numerical simulation, this dissertation research on the stressed complex joints. The results of the study show that the abdominal rod for circular steel tubes joint (JD1) is instability failure which is led to the local buckling of compressive bar; the abdominal rod for single angle steel (JD2) or double angle steel (JD3) joint is instability failure because of the local buckling of the joint board. Under the web members and joint boards all fitting their own capacity requirements, JD1 is very easy to make draw bar broken on both sides of the pillar tube wall region, JD2 and JD3 are apt to damage on the weak positions of joint board ends and pillar tube wall joint. In the three forms of web member joints, the best ultimate bearing capacity is JD1 , JD3 is the second and JD2 is minimum.


Author(s):  
Julian F. Hallai ◽  
Stelios Kyriakides

In several offshore applications hot-finished pipe that often exhibits Lu¨ders bands is bent to strains of 2–3%. Lu¨ders banding is a material instability that leads to inhomogeneous plastic deformation in the range of 1–4%. It can precipitate structural instabilities and collapse of the pipe. Experiments and analysis are used to study the interaction of the prevalent structural instabilities under bending with Lu¨ders banding, with the objective of providing guidance to the designer. Pure bending experiments on tubes of various D/t values reveal that Lu¨ders bands result in the development of inhomogeneous deformation in the structure, in the form of coexistence of two curvature regimes. Under rotation controlled bending, the higher curvature zone(s) gradually spreads while the moment remains essentially unchanged. For relatively low D/t tubes with relatively smaller Lu¨ders strain, the whole tube eventually is deformed to the higher curvature, subsequently entering the usual hardening regime where it continues to deform uniformly until the expected limit state is reached. For higher D/t tubes and/or for materials with longer Lu¨ders strain, the structure collapses during the inhomogeneous deformation regime. This class of problems is analyzed using 3D finite elements and an elastic-plastic constitutive model with an up-down-up material response. It will be demonstrated that the solution procedure followed can simulate the experiments with consistency.


2020 ◽  
pp. 93-98
Author(s):  
Viktar V. Tur ◽  
Radoslaw Duda ◽  
Dina Khmaruk ◽  
Viktar Basav

In this paper, a modified strains development model (MSDM) for expansive concrete-filled steel tube (ECFST) was formulated and verified on the experimental data, obtained from testing specimens on the expansion stage. The modified strain development model for restraint strains and self-stresses values estimation in concrete with high expansion energy capacity under any type of the symmetrical and unsymmetrical finite stiffness restraint conditions was proposed. Based on proposed MSDM a new model for expansive concrete-filled steel tubes is developed. The main difference between this model and other previously developed models consists in taking into account in the basic equations an induced force in restrain that is considered as an external load applied to the concrete core of the member. For verification of the proposed model-specific experimental studies were performed. As follows from comparison results restrained expansion strains values calculated following the proposed model shows good compliance with experimental data. The values predicted by the proposed MSDM for concrete-filled steel and obtained experimental data demonstrated good agreement that confirms the validity of the former.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1434
Author(s):  
Muhammmad Faisal Javed ◽  
Haris Rafiq ◽  
Mohsin Ali Khan ◽  
Fahid Aslam ◽  
Muhammad Ali Musarat ◽  
...  

This experimental study presents concrete-filled double-skin tubular columns and demonstrates their expected advantages. These columns consist of an outer steel tube, an inner steel tube, and concrete sandwiched between two tubes. The influence of the outer-to-inner tube dimension ratio, outer tube to thickness ratio, and type of inner tube material (steel, PVC pipe) on the ultimate axial capacity of concrete-filled double-skin tubular columns is studied. It is found that the yield strength of the inner tube does not significantly affect the ultimate axial capacity of concrete-filled double-skin tubular composites. With the replacement of the inner tube of steel with a PVC pipe, on average, less than 10% strength is reduced, irrespective of size and dimensions of the steel tube. Hence, the cost of a project can be reduced by replacing inner steel tubes with a PVC pipes. Finally, the experimental results are compared with the existing design methods presented in AISC 360-16 (2016), GB51367 (2019), and EC4 (2004). It is found from the comparison that GB51367 (2019) gives better results, followed by AISC (2016) and EC4 (2004).


Sign in / Sign up

Export Citation Format

Share Document