Analysis on the Status of Concrete Filled Double Skin Steel Tubes Mechanical Properties

2014 ◽  
Vol 488-489 ◽  
pp. 374-376
Author(s):  
Bing Wang ◽  
Lu Ma ◽  
Xiao Liu

Concrete filled double skin steel tubes which is developed on the basis of concrete filled steel tube, it is a new member. Combination of Chinese and foreign literature, this paper comprehensively discusses the research results about concrete filled double skin steel tubes member, then put forward the further research work, for concrete filled double skin steel tubes structure in deeply study to play a guiding role.

2013 ◽  
Vol 671-674 ◽  
pp. 833-837
Author(s):  
Yang Wen ◽  
Fei Zhou

In order to discuss the failure mechanism of concrete filled steel tube lattice wind generator tower joints. Based on the parameters of web member section form, and using nonlinear static numerical simulation, this dissertation research on the stressed complex joints. The results of the study show that the abdominal rod for circular steel tubes joint (JD1) is instability failure which is led to the local buckling of compressive bar; the abdominal rod for single angle steel (JD2) or double angle steel (JD3) joint is instability failure because of the local buckling of the joint board. Under the web members and joint boards all fitting their own capacity requirements, JD1 is very easy to make draw bar broken on both sides of the pillar tube wall region, JD2 and JD3 are apt to damage on the weak positions of joint board ends and pillar tube wall joint. In the three forms of web member joints, the best ultimate bearing capacity is JD1 , JD3 is the second and JD2 is minimum.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1434
Author(s):  
Muhammmad Faisal Javed ◽  
Haris Rafiq ◽  
Mohsin Ali Khan ◽  
Fahid Aslam ◽  
Muhammad Ali Musarat ◽  
...  

This experimental study presents concrete-filled double-skin tubular columns and demonstrates their expected advantages. These columns consist of an outer steel tube, an inner steel tube, and concrete sandwiched between two tubes. The influence of the outer-to-inner tube dimension ratio, outer tube to thickness ratio, and type of inner tube material (steel, PVC pipe) on the ultimate axial capacity of concrete-filled double-skin tubular columns is studied. It is found that the yield strength of the inner tube does not significantly affect the ultimate axial capacity of concrete-filled double-skin tubular composites. With the replacement of the inner tube of steel with a PVC pipe, on average, less than 10% strength is reduced, irrespective of size and dimensions of the steel tube. Hence, the cost of a project can be reduced by replacing inner steel tubes with a PVC pipes. Finally, the experimental results are compared with the existing design methods presented in AISC 360-16 (2016), GB51367 (2019), and EC4 (2004). It is found from the comparison that GB51367 (2019) gives better results, followed by AISC (2016) and EC4 (2004).


2019 ◽  
Vol 22 (11) ◽  
pp. 2490-2503 ◽  
Author(s):  
YT Zhang ◽  
B Shan ◽  
Y Xiao

Existing research on the widely used concrete-filled steel tubes is mainly focused on static or cyclic loading, and the studies on effects of high strain rate are relatively rare. In this article, seven stub concrete-filled steel tubular columns with square section were tested under both static and impact loads, using a large-capacity drop-weight testing machine. The research parameters were variable height of the drop-weight and different load types. The experimental results show that the failure modes of the concrete-filled steel tube columns from the impact tests are similar with those under static load, characterized by the local buckling of the steel tube. The time history curves of impact force and steel strain were investigated. The results indicate that with increasing impact energy, the concrete-filled steel tube stub columns had a stronger impact-resistant behavior. The dynamic analysis software LS-DYNA was employed to simulate the impact behaviors of the concrete-filled steel tube specimens, and the finite element results were reasonable compared with the test results. The parameter analysis on the impact behavior of concrete-filled steel tube columns was performed using the finite element model as well. A simple method was proposed to calculate the impact strength of square concrete-filled steel tube columns and compared favorably with experimental results.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1046 ◽  
Author(s):  
Rongling Zhang ◽  
Lina Ma ◽  
Qicai Wang ◽  
Jia Li ◽  
Yu Wang ◽  
...  

To study different lateral restraints, different constituents of expansion agents, the influence of different steel ratios, and concrete creep properties, we carried out experiments with lateral restraint and without lateral restraint conditions separately on 12 specimens with the expansion agent content accounting for 4%, 8%, and 12% respectively. In addition, the creep tests were performed on specimens with different steel ratios of 0.0%, 3.8%, 6.6%, and 9.2%. The test results show that the lateral restraint improves the strength of the system (concrete-filled steel tubes) which resists further load after the concrete ultimate strength is surpassed and reduces the creep. The creep degree of the concrete-filled steel tube with lateral restraint is about 0.09–0.30 times smaller than that of the tube without lateral restraints. The creep degree of the concrete-filled steel tube increases as the steel ratio decreases. Creep tests with different amounts of expansion agent indicate that the creep degree of the concrete structure increases as expansion agent content decreases. To study the internal mechanism of the creep of concrete-filled steel tubes with different lateral restraints and different expansion agent concentrations, a microscopic pore structure test on the steel core concrete was conducted using the RapidAir457 pore structure instrument. Microscopic studies show that the air content and the length of the bubble chord of the laterally restrained core concrete are lower than those without lateral restraint core concrete. The amount of air content and the length of the bubble chord of core concrete specimens increase as the expansion agent content in the core concrete specimens decreases from 12% to 4%. Under the same external loading conditions, as steel ratio increases, the lateral restraint causes a further reduction of creep. The results of this study suggest that the creep of concrete can be reduced by selecting appropriate lateral restraint conditions and an optimal amount of expansion agent in the mix design of concrete for concrete-filled steel tubes.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1098 ◽  
Author(s):  
Xuetao Lyu ◽  
Yang Xu ◽  
Qian Xu ◽  
Yang Yu

This study investigated the axial compressive performance of six thin-walled concrete-filled steel tube (CFST) square column specimens with steel bar stiffeners and two non-stiffened specimens at constant temperatures of 20 °C, 100 °C, 200 °C, 400 °C, 600 °C and 800 °C. The mechanical properties of the specimens at different temperatures were analyzed in terms of the ultimate bearing capacity, failure mode, and load–displacement curve. The experiment results show that at high temperature, even though the mechanical properties of the specimens declined, leading to a decrease of the ultimate bearing capacity, the ductility and deformation capacity of the specimens improved inversely. Based on finite element software ABAQUS, numerical models were developed to calculate both temperature and mechanical fields, the results of which were in good agreement with experimental results. Then, the stress mechanism of eight specimens was analyzed using established numerical models. The analysis results show that with the increase of temperature, the longitudinal stress gradient of the concrete in the specimen column increases while the stress value decreases. The lateral restraint of the stiffeners is capable of restraining the steel outer buckling and enhancing the restraint effect on the concrete.


2010 ◽  
Vol 163-167 ◽  
pp. 3826-3829
Author(s):  
Feng Yu ◽  
Ping Wu

FRP-confined concrete filled steel tube may fully use the character of FRP-confined concrete and concrete filled steel tube. Based on the analysis of existing experimental data, the formula of ultimate bearing capacity of FRP-confined concrete filled steel tube is proposed. The mechanical behavior of FRP-confined concrete filled steel tube is mainly related to the equivalent confinement effect coefficient before the rupture of FRP. Based on the static equilibrium condition, the equivalent conversion section is adopted; taking as main parameter, the simplified stress-strain model of FRP-confined concrete filled steel tube is established. The predictions of the model agree well with test data.


2011 ◽  
Vol 255-260 ◽  
pp. 472-476
Author(s):  
Xin Qi ◽  
Qing Cheng Meng ◽  
Shi Chun Zhao

Mechanical properties of CFT column and steel beam joint with inner stiffening ring was analyzed by using FEA program ANSYS. Simultaneity, using correlative theory of circular beam, stress distributing rule of stiffening ring was induced. The multi-dimensions joint is different from the annular plane in bidirectional. Not only the turn of beam-annular stress concentration, but also lied on the oblique angle, smaller of the angle easier to form the biggest stress area. Thickness of stiffening ring can impact on load absorption of enforced plane. Results of FEA are valuable methods for design of stiffening ring.


Sign in / Sign up

Export Citation Format

Share Document