scholarly journals A Real-Time Smart Dumpsters Monitoring and Garbage Collection System using Iot

In most of the cities the overflowed garbage dumpsters are creating an obnoxious smell and making an unhygienic environment. The Collection of garbage is a very much needed municipal service that requires huge expenditures and execution of this operation is high-priced. The high pricing is due to the various factors such as man power, navigation of vehicles, fuel, maintenances and environmental costs. The above factor necessitates the design, implementation and execution of the new Smart Intelligent Garbage Alert System (SIGAS) for the smart cities. This paper focuses on the implementation of an IoT based embedded system which integrates various Sensors & controllers with RF transmitter and receiver for dumpster and vehicle monitoring system with their performance measured in real time environment.

2011 ◽  
Vol 63 (2) ◽  
pp. 248-254 ◽  
Author(s):  
T. A. Cochrane ◽  
D. Wicke ◽  
A. O’Sullivan

Waterways can contribute to the beauty and livelihood of urban areas, but maintaining their hydro-ecosystem health is challenging because they are often recipients of contaminated water from stormwater runoff and other discharges. Public awareness of local waterways’ health and community impacts to these waterways is usually poor due to of lack of easily available information. To improve community awareness of water quality in urban waterways in New Zealand, a web portal was developed featuring a real-time waterways monitoring system, a public forum, historical data, interactive maps, contaminant modelling scenarios, mitigation recommendations, and a prototype contamination alert system. The monitoring system featured in the web portal is unique in the use of wireless mesh network technology, direct integration with online modelling, and a clear target of public engagement. The modelling aims to show the origin of contaminants within the local catchment and to help the community prioritize mitigation efforts to improve water quality in local waterways. The contamination alert system aims to keep managers and community members better informed and to provide a more timely response opportunity to avert any unplanned or accidental contamination of the waterways. Preliminary feedback has been positive and is being supported by local and regional authorities. The system was developed in a cost-effective manner providing a community focussed solution for quantifying and mitigating key contaminants in urban catchments and is applicable and transferable to other cities with similar stormwater challenges.


Author(s):  
Chi-Yat Lau ◽  
Man-Ching Yuen ◽  
Ka-Ho Yueng ◽  
Cheuk-Pan Fan ◽  
On-Yi Ko ◽  
...  

2012 ◽  
Author(s):  
Yew Leong Chui ◽  
Abdul Rahman Ramli

Kertas kerja ini membentangkan sistem kawalan dan pemantauan jarak jauh dengan menggunakan SC12. Satu penukar protokol dengan unit interpretasi data telah direka bentuk dan dilaksana. Untuk menambahkan saluran operasi unit interpretasi data, satu ciri auto–diagnostik pintar telah dilaksana untuk mengesan ralat. Kata kunci: Sistem terbenam, sistem pemicuan dan pemantauan, auto-diagnostik This paper presents a real–time embedded remote triggering and monitoring system using SC12. A protocol converter associated with data interpretation unit has been developed and implemented. In order to expand simultaneous operation channel with data interpretation unit, intelligent auto–diagnostic features has been implemented for run–time error detection purposes. Key words: Embedded system, triggering and monitoring system, auto-diagnostic


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3930 ◽  
Author(s):  
Ayaz Hussain ◽  
Umar Draz ◽  
Tariq Ali ◽  
Saman Tariq ◽  
Muhammad Irfan ◽  
...  

Increasing waste generation has become a significant issue over the globe due to the rapid increase in urbanization and industrialization. In the literature, many issues that have a direct impact on the increase of waste and the improper disposal of waste have been investigated. Most of the existing work in the literature has focused on providing a cost-efficient solution for the monitoring of garbage collection system using the Internet of Things (IoT). Though an IoT-based solution provides the real-time monitoring of a garbage collection system, it is limited to control the spreading of overspill and bad odor blowout gasses. The poor and inadequate disposal of waste produces toxic gases, and radiation in the environment has adverse effects on human health, the greenhouse system, and global warming. While considering the importance of air pollutants, it is imperative to monitor and forecast the concentration of air pollutants in addition to the management of the waste. In this paper, we present and IoT-based smart bin using a machine and deep learning model to manage the disposal of garbage and to forecast the air pollutant present in the surrounding bin environment. The smart bin is connected to an IoT-based server, the Google Cloud Server (GCP), which performs the computation necessary for predicting the status of the bin and for forecasting air quality based on real-time data. We experimented with a traditional model (k-nearest neighbors algorithm (k-NN) and logistic reg) and a non-traditional (long short term memory (LSTM) network-based deep learning) algorithm for the creation of alert messages regarding bin status and forecasting the amount of air pollutant carbon monoxide (CO) present in the air at a specific instance. The recalls of logistic regression and k-NN algorithm is 79% and 83%, respectively, in a real-time testing environment for predicting the status of the bin. The accuracy of modified LSTM and simple LSTM models is 90% and 88%, respectively, to predict the future concentration of gases present in the air. The system resulted in a delay of 4 s in the creation and transmission of the alert message to a sanitary worker. The system provided the real-time monitoring of garbage levels along with notifications from the alert mechanism. The proposed works provide improved accuracy by utilizing machine learning as compared to existing solutions based on simple approaches.


Helix ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 222-227
Author(s):  
Jitendra Zalke ◽  
Shubham C. Anjankar ◽  
Sandeepkumar R. Pandey ◽  
Noopoor Misal ◽  
Parag Jawarkar

2017 ◽  
Vol 13 (08) ◽  
pp. 79 ◽  
Author(s):  
Nagarjuna Telagam ◽  
Nehru Kandasamy ◽  
Nagendra Prasad G ◽  
Menakadevi Nanjundan

A ZigBee based wireless sensor network is implemented in this paper which is of low-cost solar-powered air quality monitoring system. The main objective of the proposed architecture is to interfacing various sensors to measure the sensor analog data and displayed in LabVIEW on the monitor using the graphical user interface (GUI).  The real time ambient air quality monitoring in smart cities is of greater significance for the health of people. The wireless network sensor nodes are placed at different traffic signals in the smart cities which collect and report real-time data on different gases which are present in the environment such as carbon monoxide (CO), nitrogen dioxide (NO2), methane (CH4) and humidity. The proposed system allows smart cities to monitor air quality conditions on a desktop/laptop computer through an application designed using graphical programming based LabVIEW software and provides an alert if the air quality characteristics exceed acceptable levels. The sensor network was successfully tested on the campus of the institute of aeronautical engineering, Hyderabad. The sensor data are indicated by different indicators on the front panel of LabVIEW and also different charts are plotted with respect to time and amplitude which explains the severity of polluted areas.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2679
Author(s):  
Zhoujing Ye ◽  
Guannan Yan ◽  
Ya Wei ◽  
Bin Zhou ◽  
Ning Li ◽  
...  

Traditional road-embedded monitoring systems for traffic monitoring have the disadvantages of a short life, high energy consumption and data redundancy, resulting in insufficient durability and high cost. In order to improve the durability and efficiency of the road-embedded monitoring system, a pavement vibration monitoring system is developed based on the Internet of things (IoT). The system includes multi-acceleration sensing nodes, a gateway, and a cloud platform. The key design principles and technologies of each part of the system are proposed, which provides valuable experience for the application of IoT monitoring technology in road infrastructures. Characterized by low power consumption, distributed computing, and high extensibility properties, the pavement vibration IoT monitoring system can realize the monitoring, transmission, and analysis of pavement vibration signal, and acquires the real-time traffic information. This road-embedded system improves the intellectual capacity of road infrastructure and is conducive to the construction of a new generation of smart roads.


10.29007/q4cf ◽  
2018 ◽  
Author(s):  
Ronak Vithlani ◽  
Siddharth Fultariya ◽  
Mahesh Jivani ◽  
Haresh Pandya

In this paper, we have described an operative prototype for Internet of Things (IoT) used for consistent monitoring various environmental sensors by means of low cost open source embedded system. The explanation about the unified network construction and the interconnecting devices for the consistent measurement of environmental parameters by various sensors and broadcast of data through internet is being presented. The framework of the monitoring system is based on a combination of embedded sensing units, information structure for data collection, and intellectual and context responsiveness. The projected system does not involve a devoted server computer with respect to analogous systems and offers a light weight communication protocol to monitor environment data using sensors. Outcomes are inspiring as the consistency of sensing information broadcast through the projected unified network construction is very much reliable. The prototype was experienced to create real-time graphical information rather than a test bed set-up.


Sign in / Sign up

Export Citation Format

Share Document