scholarly journals Effect of Minimum Quantity Lubrication and Dry Cutting on the Tool Life and Chip Morphology after Milling of Aluminum Alloy 7075-T6

2019 ◽  
Vol 8 (2) ◽  
pp. 5900-5905

This research deals the experimental works on the effect of minimum quantity lubrication (MQL) and dry cutting towards the cutting tool life and chip morphology in high-speed milling of aluminum alloy 7075-T6 with uncoated carbide tools. MQL and dry cutting were eco-friendly approaches that highlight essential issues in the field of manufacturing technology. Thus, further investigation required to observe the intensity of those approaches. The experiment was done on computer numerical control (CNC) five axes milling machine at distinct machining parameters, which are cutting speed (500 and 600 m/min), feed rate (0.12 and 0.15 mm/tooth) and axial depth of cut (1.4 and 1.7 mm), while the radial depth of cut restricted to 7 mm. The effect of fluid approaches and machining parameters on eight samples have analyzed the result of the setting of three factors and two levels in accordance with the full factorial design and analyzed further using ANOVA. The MQL flow rate was set at 100 mL/h. The tool life criterion was determined when the tool wear failure reached 0.30 mm. The chips collected from all machining conditions were taken to be examined using an optical microscope. The empirical model of tool life for the MQL and dry cutting has been developed within the experimental ranges evaluated. The prolonged tool lifespan beyond 20.14 minutes and favorable chip formation were obtained at 500 and 600 m/min, 0.12 mm/tooth, and 1.40 mm, respectively under MQL 100 mL/h. MQL 100 mL/h appeared to be one fit for metal cutting industry that prioritizes clean and green machining as well as the use of appropriate machining parameters as it leads to economic benefits in terms of fluid cost-saving and the better machinability.

Author(s):  
Brian Boswell ◽  
Mohammad Nazrul Islam ◽  
Ian J Davies ◽  
Alokesh Pramanik

The machining of aerospace materials, such as metal matrix composites, introduces an additional challenge compared with traditional machining operations because of the presence of a reinforcement phase (e.g. ceramic particles or whiskers). This reinforcement phase decreases the thermal conductivity of the workpiece, thus, increasing the tool interface temperature and, consequently, reducing the tool life. Determining the optimum machining parameters is vital to maximising tool life and producing parts with the desired quality. By measuring the surface finish, the authors investigated the influence that the three major cutting parameters (cutting speed (50–150 m/min), feed rate (0.10–0.30 mm/rev) and depth of cut (1.0–2.0 mm)) have on tool life. End milling of a boron carbide particle-reinforced aluminium alloy was conducted under dry cutting conditions. The main result showed that contrary to the expectations for traditional machined alloys, the surface finish of the metal matrix composite examined in this work generally improved with increasing feed rate. The resulting surface roughness (arithmetic average) varied between 1.15 and 5.64 μm, with the minimum surface roughness achieved with the machining conditions of a cutting speed of 100 m/min, feed rate of 0.30 mm/rev and depth of cut of 1.0 mm. Another important result was the presence of surface microcracks in all specimens examined by electron microscopy irrespective of the machining condition or surface roughness.


2017 ◽  
Vol 18 (1) ◽  
pp. 147-154
Author(s):  
Mohammad Yeakub Ali ◽  
Wan Norsyazila Jailani ◽  
Mohamed Rahman ◽  
Muhammad Hasibul Hasan ◽  
Asfana Banu

Cutting fluid plays an important role in machining processes to achieve dimensional accuracy in reducing tool wear and improving the tool life. Conventional flood cooling method in machining processes is not cost effective and consumption of huge amount of cutting fluids is not healthy and environmental friendly. In micromachining, flood cooling is not recommended to avoid possible damage of the microstructures. Therefore, one of the alternatives to overcome the environmental issues to use minimum quantity of lubrication (MQL) in machining process. MQL is eco-friendly and has economical advantage on manufacturing cost. However, there observed lack of study on MQL in improving machined surface roughness in micromilling. Study of the effects of MQL on surface roughness should be carried out because surface roughness is one of the important issues in micromachined parts such as microfluidic channels. This paper investigates and compares surface roughness with the presence of MQL and dry cutting in micromilling of aluminium alloy 1100 using DT-110 milling machine. The relationship among depth of cut, feed rate, and spindle speed on surface roughness is also analyzed. All three machining parameters identified as significant for surface roughness with dry cutting which are depth of cut, feed rate, and spindle speed. For surface roughness with MQL, it is found that spindle speed did not give much influence on surface roughness. The presence of MQL provides a better surface roughness by decreasing the friction between tool and workpiece.


2021 ◽  
Vol 27 (4) ◽  
pp. 296-305
Author(s):  
Arpit Srivastava ◽  
Mukesh Kumar Verma ◽  
Ramendra Singh Niranjan ◽  
Abhishek Chandra ◽  
Praveen Bhai Patel

Abstract Aluminum alloy 7075-T651 is a widely used material in the aviation, marine, and automobile sectors. The wide application marks the importance of this material’s research in the manufacturing field. This research focuses on optimizing input process parameters of the turning process in the machining of Aluminum 7075-T651 with a tungsten carbide insert. The input machining parameters are cutting speed, feed, and depth of cut for the output response parameters cutting force, feed force, radial force, material removal, and surface roughness of the workpiece. For optimization of process parameters, the Taguchi method, with standard L9 orthogonal array, is used. ANOVA is applied to obtain signifi-cant factors and optimal combinations of process parameters.


2019 ◽  
Vol 895 ◽  
pp. 127-133 ◽  
Author(s):  
C.J. Vishwas ◽  
M. Naik Gajanan ◽  
B. Sachin ◽  
Roy Abhinaba ◽  
N.P. Puneet ◽  
...  

Aluminum-based metal matrix composites (MMCs) have been suggested due to intense interest from automobile, marine, aerospace and other structural applications owing to their balanced mechanical, physical and chemical properties. MMCs are manufactured in order to meet present demand such as low material density, high mechanical strength and higher wear resistance of the component. Generally,MMCs tend to form rougher surface during machining because of the abrasive nature of hard ceramic particles present in them. Stir casting technique was used for fabrication of this composite which ensures better homogeneity.Furthermore, an attempt has been made in this paper to examine the results on the surface roughness of Al-6082/SiC metal matrix composites (containing 0%, 5% and 10% SiC particles).Focus was spent on parametric optimization of these composites in order to achieve cost-effective machining limits. The machining parameter studies have been carried out through the design of experiments (DoE) under minimum quantity lubrication (MQL) condition and effect of machining parameters such as spindle speed, feed rate and depth of cut on surface roughness was investigated to analyze the influence of reinforcement on surface roughness. In addition, analysis of variance was studied to obtain percentage contribution of machining parameters involved. Also, the surface morphology of the machined surface was studied through a scanning electron microscope (SEM). Distribution of SiC in aluminum alloy is fairly uniform with few clusters. Results of the experiments revealed that most significant turning parameter for surface roughness was spindle speed followed by feed rate and depth of cut. Furthermore, an optimal setting parameter for getting lower surface roughness was presented in confirmation table.


Minimum quantity lubrication (MQL) is currently a widely used lubricating technique during machining, in which minimum amount of lubricant in the form of mist is delivered to the machining interface, thus helps to reduce the negative effects caused to the environment and human health. Further, to enhance the productivity of machining process specifically for hard-to-cut materials, nano cutting fluid (suitably mixed nano materials with conventional cutting fluid) is used as an alternative method to conventional lubrication (wet) in MQL. In the current paper, h-BN nano cutting fluid was formulated with 0.1% vol. concentration of h-BN in conventional cutting fluid for NF-MQL technique and its tribological effects on machining performance of Inconel 625 were compared with other lubricating conditions (dry, wet, MQL conventional). The tribological effects were analyzed in terms of tool wear analysis, chip morphology along with statistical analysis for surface roughness and cutting forces. The optimal input machining parameters for experiments were defined by the use of Taguchi and Grey relational based multi response optimization technique. The tribological effects of h-BN NF-MQL shows that it is a viable and sustainable option for improving the machining performance of hard- to- cut material like Inconel 625


Author(s):  
D. S. Sai Ravi Kiran ◽  
Sanapala Sri Ram ◽  
Tangeti Bhaskararao ◽  
Boddu Eswar Venkat Sai ◽  
Kari Suraj Kumar ◽  
...  

With numerous responses established on Taguchi L9, orthogonal array coupled with current work proposes a novel methodology for optimizing machining parameters on turning of AA 6063 T6 aluminum alloy. Experimental assessments are accomplished on AA 6063 T6 aluminum alloy. Turning trails are carried out under dry cutting conditions using an uncoated carbide insert. Cutting parameters such as cutting speed, feed rate, and depth of cut are optimized in this effort while numerous responses such as surface roughness(Ra) and material removal rate are taken into consideration (MRR). From the grey analysis, a grey relational grade(GRG) is calculated. The optimal amounts of parameters have been identified based on the values of grey relational grade, and then ANOVA is used to determine the significant influence of parameters. To authenticate the test result, a confirmation test is executed. The result of the experiments shows that by using this method. the turning process responses can be significantly improved.


The paper investigated the effectiveness of near-dry machining also known as minimum quantity lubrication (MQL) on tool wear when aluminum alloy 7075-T6 was milled using bull nose carbide insert. The foregoing study found that the high tool wear was occurred in machining aluminum alloy 7075-T6 with uncoated carbide under dry machining. Due to that, dry machining was performed to examine its result with MQL. Different values of cutting parameter selected were cutting speed of 500 and 600 m/min, the feed rate of 0.12 and 0.15 mm/tooth, and axial depth of cut of 1.40 and 1.70 mm. 100 mL/h was set as MQL flow rate. Eight samples were performed on five axes milling machine according to a full factorial design. The tool wear was examined and measured progressively at every time interval using an optical microscope. From the analysis, MQL 100 mL/h at 500 m/min, 0.12 mm/tooth, and 1.40 mm was found to be better than dry machining. The adhesion wear mechanism was observed at both machining conditions. Near-dry machining with appropriate flow rate and machining parameters has the potential to contribute to long-term environmental friendly machining in line with the industrial revolution phase.


Minimum quantity lubrication (MQL) is an eco-friendly method, where a small amount of fluid was sprayed to cutting edge in mist form with the aid of the air. The foregoing studies revealed that inappropriate machining parameters without the assistance of the cutting fluid methods became a major challenge in milling aluminum alloy 7075-T6. The paper presents the findings of the experimental work to assess the effect of machining parameters towards cutting tool life and machined surface roughness in milling aluminum alloy 7075-T6 at high cutting speed under MQL condition. An eight-run experiment was designed according to full factorial design based upon two levels of cutting speed (500 m/min, 600 m/min), feed rate (0.12 mm/tooth, 0.15 mm/tooth), and axial depth of cut (1.40 mm, 1.70 mm) and then analyzed employed ANOVA to determine the significant machining parameters. The cutting tool life and machined surface roughness were assigned by the rejection criterion of tool flank wear in the milling operation. The optical microscope and portable surface roughness tester were applied to analyze tool wear and average surface roughness value. Cutting speed and feed rate were significantly contributing to the tool life and surface roughness. The longest tool lifespan of 20.14 minutes and lowest surface roughness value of 0.569 µm were obtained at a speed of 500 and 600 m/min, respectively, with a low combination of the rest of parameter which are 0.12 mm/tooth and 1.40 mm.


Sign in / Sign up

Export Citation Format

Share Document