scholarly journals EFFECT OF MINIMUM QUANTITY LUBRICATION ON SURFACE ROUGHNESS IN TOOL-BASED MICROMILLING

2017 ◽  
Vol 18 (1) ◽  
pp. 147-154
Author(s):  
Mohammad Yeakub Ali ◽  
Wan Norsyazila Jailani ◽  
Mohamed Rahman ◽  
Muhammad Hasibul Hasan ◽  
Asfana Banu

Cutting fluid plays an important role in machining processes to achieve dimensional accuracy in reducing tool wear and improving the tool life. Conventional flood cooling method in machining processes is not cost effective and consumption of huge amount of cutting fluids is not healthy and environmental friendly. In micromachining, flood cooling is not recommended to avoid possible damage of the microstructures. Therefore, one of the alternatives to overcome the environmental issues to use minimum quantity of lubrication (MQL) in machining process. MQL is eco-friendly and has economical advantage on manufacturing cost. However, there observed lack of study on MQL in improving machined surface roughness in micromilling. Study of the effects of MQL on surface roughness should be carried out because surface roughness is one of the important issues in micromachined parts such as microfluidic channels. This paper investigates and compares surface roughness with the presence of MQL and dry cutting in micromilling of aluminium alloy 1100 using DT-110 milling machine. The relationship among depth of cut, feed rate, and spindle speed on surface roughness is also analyzed. All three machining parameters identified as significant for surface roughness with dry cutting which are depth of cut, feed rate, and spindle speed. For surface roughness with MQL, it is found that spindle speed did not give much influence on surface roughness. The presence of MQL provides a better surface roughness by decreasing the friction between tool and workpiece.

2019 ◽  
Vol 895 ◽  
pp. 127-133 ◽  
Author(s):  
C.J. Vishwas ◽  
M. Naik Gajanan ◽  
B. Sachin ◽  
Roy Abhinaba ◽  
N.P. Puneet ◽  
...  

Aluminum-based metal matrix composites (MMCs) have been suggested due to intense interest from automobile, marine, aerospace and other structural applications owing to their balanced mechanical, physical and chemical properties. MMCs are manufactured in order to meet present demand such as low material density, high mechanical strength and higher wear resistance of the component. Generally,MMCs tend to form rougher surface during machining because of the abrasive nature of hard ceramic particles present in them. Stir casting technique was used for fabrication of this composite which ensures better homogeneity.Furthermore, an attempt has been made in this paper to examine the results on the surface roughness of Al-6082/SiC metal matrix composites (containing 0%, 5% and 10% SiC particles).Focus was spent on parametric optimization of these composites in order to achieve cost-effective machining limits. The machining parameter studies have been carried out through the design of experiments (DoE) under minimum quantity lubrication (MQL) condition and effect of machining parameters such as spindle speed, feed rate and depth of cut on surface roughness was investigated to analyze the influence of reinforcement on surface roughness. In addition, analysis of variance was studied to obtain percentage contribution of machining parameters involved. Also, the surface morphology of the machined surface was studied through a scanning electron microscope (SEM). Distribution of SiC in aluminum alloy is fairly uniform with few clusters. Results of the experiments revealed that most significant turning parameter for surface roughness was spindle speed followed by feed rate and depth of cut. Furthermore, an optimal setting parameter for getting lower surface roughness was presented in confirmation table.


Author(s):  
V. Vijayan ◽  
B. Sureshkumar ◽  
G. Sathishkumar ◽  
R. Yokeshwaran

Turning is the machining process carried out to make cylindrical parts. Since the process is economical and the flexibility of turning operation is high, the process has become highly versatile among the industrial scenario. The design of experiments concept along with response surface methodology is used to analyze the machining parameters such as spindle seed, feed rate and depth of cut, of the turning operation. Three levels of spindle speed, feed rate and depth of cut are used as input parameters and their corresponding responses such as material removal rate (M.R.R), surface roughness, feed force, thrust force and cutting force are considered as the output parameters. The main aim of this experimentation process is to identify the optimal process parameters to get high M R R and low surface roughness. During high spindle speed, the M R R is high and vice versa. Surface roughness is high when its corresponding spindle speed and depth of cut is high. A high spindle speed, the chip formation is continuous whereas in medium speed, discontinuous chip is formed. M.R.R is high when spindle speed, depth of cut and feed rate are high.


2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


Author(s):  
Brian Boswell ◽  
Mohammad Nazrul Islam ◽  
Ian J Davies ◽  
Alokesh Pramanik

The machining of aerospace materials, such as metal matrix composites, introduces an additional challenge compared with traditional machining operations because of the presence of a reinforcement phase (e.g. ceramic particles or whiskers). This reinforcement phase decreases the thermal conductivity of the workpiece, thus, increasing the tool interface temperature and, consequently, reducing the tool life. Determining the optimum machining parameters is vital to maximising tool life and producing parts with the desired quality. By measuring the surface finish, the authors investigated the influence that the three major cutting parameters (cutting speed (50–150 m/min), feed rate (0.10–0.30 mm/rev) and depth of cut (1.0–2.0 mm)) have on tool life. End milling of a boron carbide particle-reinforced aluminium alloy was conducted under dry cutting conditions. The main result showed that contrary to the expectations for traditional machined alloys, the surface finish of the metal matrix composite examined in this work generally improved with increasing feed rate. The resulting surface roughness (arithmetic average) varied between 1.15 and 5.64 μm, with the minimum surface roughness achieved with the machining conditions of a cutting speed of 100 m/min, feed rate of 0.30 mm/rev and depth of cut of 1.0 mm. Another important result was the presence of surface microcracks in all specimens examined by electron microscopy irrespective of the machining condition or surface roughness.


BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 3266-3277
Author(s):  
Ümmü K. İşleyen ◽  
Mehmet Karamanoğlu

This paper examined the effect of machining parameters on surface roughness of medium density fiberboard (MDF) machined using a computer numerical control (CNC) router. The machining parameters such as spindle speed, feed rate, depth of cut, and tool diameter were examined for milling. The experiments were conducted at two levels of spindle speeds, four levels of feed rates, two levels of tool diameters, and two levels of axial depths of cut. The surface roughness values of MDF grooved by CNC were measured with stylus-type equipment. Statistical methods were used to determine the effectiveness of the machining parameters on surface roughness. The influence of each milling parameter affecting surface roughness was analyzed using analysis of variance (ANOVA). The significant machining parameters affecting the surface roughness were the feed rate, spindle speed, and tool diameter (p < 0.05). There was no significant influence of axial depth of cut on the surface roughness. The surface roughness decreased with increasing spindle speed and decreasing feed rate. The value of surface roughness increased with the increase of tool diameter.


2014 ◽  
Vol 699 ◽  
pp. 198-203 ◽  
Author(s):  
Raja Izamshah Raja Abdullah ◽  
Aaron Yu Long ◽  
Md Ali Mohd Amran ◽  
Mohd Shahir Kasim ◽  
Abu Bakar Mohd Hadzley ◽  
...  

Polyetheretherketones (PEEK) has been widely used as biomaterial for trauma, orthopaedic and spinal implants. Component made from Polyetheretherketones generally required additional machining process for finishing which can be a problem especially to attain a good surface roughness and dimensional precision. This research attempts to optimize the machining and processing parameters (cutting speed, feed rate and depth of cut) for effectively machining Polyetheretherketones (PEEK) implant material using carbide cutting tools. Response Surface Methodology (RSM) technique was used to assess the effects of the parameters and their relations towards the surface roughness values. Based on the analysis results, the optimal machining parameters for the minimum surface roughness values were by using cutting speed of 5754 rpm, feed rate of 0.026 mm/tooth and 5.11 mm depth of cut (DOC).


Author(s):  
Saeid Amini ◽  
Mohammad Baraheni ◽  
Mohammad Khaki

Turn-milling process has been paid attention in order to be used in multi-task machining processes. Moreover, looking for new machining techniques aimed at reducing cutting force is of important. Reducing cutting force in machining processes has the benefits of extending tool life and improving surface quality. One of the new concepts for reducing the cutting force is applying ultrasonic vibration. In this paper, effects of ultrasonic vibration under different machining parameters in turn-milling process of Al-7075 alloy will be investigated. In this order, a special mechanism was designed to apply ultrasonic vibration during machining process. Ultrasonic vibration exertion on the tool reduced cutting force and surface roughness up to 75% and 35%, respectively. Also tool rotational speed increment induced cutting force and surface roughness increment. In addition, tool feed rate and workpiece rotational speed increment caused cutting force and surface roughness increment. Although, feed rate was more influential.


Author(s):  
Thanh-Qua Nguyen ◽  
Jeongmin Mah ◽  
Woo-Tae Park ◽  
Sangyoup Lee

Abstract In an effort to make microfluidic research more attractive and cost-effective, micromilled polymethyl methacrylate (PMMA) has gained interests as an alternative method to the conventional cleanroom-based micromolds fabrication technologies. The most enabling aspects of micromilling are flexibility on the design changes and the ability to fabricate three-dimensional structures. However, the major drawback of micromilling based micromold fabrication is the presence of burrs and tool marks on the surface after machining. High surface roughness on replicated polymer results in poor bonding strength and optical clarity. The roughness of micromilled surface strongly depends on the machining parameters such as tool size, spindle speed, feed rate, width of cut, and depth of cut. Thus, it is crucial to optimize the machining parameters to obtain a good surface finish. Although the optimal fabrication parameters are used to machine the micromold, the surface roughness of micromilled mold is still relative high compared to the surface of unprocessed PMMA. In this paper, we first optimize the micromilling parameters of Computer Numerical Control (CNC) milling machine to achieve the best possible of surface roughness. We have optimized the machining parameters for a flat endmill with 100 μm, 200 μm, and 400 μm in diameter of spindle speed, feed rate, width of cut, and the depth of cut respectively at 18000 rpm, 20 mm/min, 30 μm, and 20 μm. Then, a method to polish the structured surface of the micromilled mold was developed using the rotary magnetic field. By modifying the CNC program language G-code, we were able to control the polishing path, polishing force and time precisely. Consequently, the burrs and tool marks are completely removed, such that the roughness of the surface is decreased from 350 nm Ra to 30 nm Ra, and 1200 nm Rz to 300 nm Rz while the profile of microstructures is not deteriorated. Finally, we demonstrate our mold fabrication scheme by building a microfluidic immunoassay device with four Quake’s valves and showed the sequential assay process successfully.


2018 ◽  
Vol 780 ◽  
pp. 105-110
Author(s):  
Ukrit Thanasuptawee ◽  
Chamrat Thakhamwang ◽  
Somsak Siwadamrongpong

In this study, there are three machining parameters consist of spindle speed, feed rate and depth of cut which were conducted through full factorial with four center points to determine the effect of machining parameters on the surface roughness and verify whether there is curvature in the model for CNC face milling process in an automotive components manufacturer in Thailand. The workpieces used semi-solid die casted ADC12 aluminum alloy crankcase housing which they were performed by the ARES SEIKI model R5630 3-axis CNC vertical machining center and face milling cutter with diameter of 63 millimeters. The surface roughness of face-milled was measured by the surface roughness tester. It was found that the greatest main effect influence to surface roughness was spindle speed, followed by feed rate and depth of cut at significance level of 0.05.


2012 ◽  
Vol 622-623 ◽  
pp. 390-393 ◽  
Author(s):  
R. Vinayagamoorthy ◽  
M. Anthony Xavior

The Ti-6Al-4V titanium alloy is commonly used in aerospace, automotive industries and for manufacturing of medical implants, due to its biocompatibility. The objective of this work is to investigate the performance of precision turning using conventional lathe on Ti6Al4V under dry working conditions. A range of parameters that involve the machining processes were recognized and a consensus was reached to finalize its values. The proposed work is to carry out machining under the selected levels of parameters to evaluate the cutting force and surface roughness generated as the consequence of the machining process. Cutting speed, feed rate, depth of cut and nose radiuses are considered as the machining parameters for experimentation. The variation in the surface roughness and the cutting force for the variation of each machining parameters are presented graphically.


Sign in / Sign up

Export Citation Format

Share Document