scholarly journals Development and Modelling of Three Phase Inverter for Harmonic Improvement using Sinusoidal Pulse Width Modulation (SPWM) Control Technique

2019 ◽  
Vol 8 (4) ◽  
pp. 1897-1902

This paper describes the design of a 400 V, three-phase voltage source inverter system using Sinusoidal Pulse Width Modulation (SPWM) control technique. Pulse Width Modulation (PWM) is an internal control technique for inverters. The Sinusoidal Pulse Width Modulation (SPWM) technique is the type of PWM used in this work. The aim is to reduce the harmonic produced by the inverter. Current standards require that total harmonic distortion (THD) be minimal. A three-phase SPWM signal is implemented in order to create an output voltage which is closer to a true sine wave and reduce harmonics. The development and model were implemented using MATLAB Simulink soft-ware and hardware parameters. The addition of a low pass filter circuit aids the achievement of smoother sine waveforms and a reduced THD value of 0.17%. The proposed concept has been validated through experimentally on a laboratory prototype by using DSP TMS320F28335 real-time digital control. The experimental outcomes emphasize the authenticity of the suggested technique in reducing harmonics, which can be promising to power quality improvement.

2021 ◽  
Vol 9 (04) ◽  
pp. 34-43
Author(s):  
K. Fernand Koffi ◽  
◽  
Agoua Raoule ◽  
Diety Landry ◽  
Georges Loum ◽  
...  

The need to use SPWM controlled voltage inverters in MV, led us to examine how to filter alternative signals with filters (L-C) and (RL-C). This allowed us to decide on the use of certain formulas for calculating the elements of these filters. Likewise, we have proposed a method of calculating the resistance R by mathematical iterations without using the quality factor Q, in order to obtain a low error rate between the RMS values and the fundamental effective values and THDs respecting the standard 519 IEEE - 2014. The results of these studies obtained using the MATLAB-SIMULINK software are presented in the penultimate session of this article. Nomenclature SPWM Sinusoidal Pulse-Width-Modulation THD Total Harmonic distortion SN Apparent power of the alternating load MV Medium voltage alternating voltage (1 kV --- 50 kV) Uph phase-to-phase voltage at the ac load RMS Root Mean Squared R L C Resistance Inductance Capacitor MVDC Medium voltage direct current VSI Voltage Source Inverter


Author(s):  
Anshu Sharma Et.al

Many high voltage applications require three-phase inverters.  The major challenge in inverter designing is the mitigation of harmonic distortion (HD) to achieve better inverting performance. Usually, sinusoidal pulse width modulation (SPWM) is widely used to trigger the inverting switches for controlling the total HD performance in the inverter. To provide the option of multiple operating ranges the multilevel inverters are designed for higher voltage operations. This paper contributes in two passes, first, an improved SPWM modulation is generated for designing the three levels inverter. Then in the second pass, the performance of the THD is evaluated under the different load conditions using V-I measurement. THD is present in the system due to the use of switches. Therefore, this paper has evaluated the performance of the proposed improved SPWM based multilevel inverter for analysis. In order to improve the performance, the modulation index of the SPWM block is varied. The performance of the component report is also presented in the short..the output waveform of the line current and the voltage are compared; The FFT analysis is done to evaluate the comparison of THD performance. It is concluded that improving the SPWM performance and the lording conditions may improve the THD performance also.


Author(s):  
Ibrahim Alhamrouni ◽  
N. Zainuddin ◽  
Mohamed Salem ◽  
Nadia H. A. Rahman ◽  
Lili Awalin

<p>The application of fossil fuels likes coal, oil and gas gives the enormous environmental impact and hazardous effects to the earth. Hence, renewable energy has become the most tremendously friendly methods to generate the electricity without pollution and emissions. Inverter is a power electronics device which is used to convert Direct Current (DC) into Alternating Current (AC). The conventional inverter no longer fulfills the requirement of reducing harmonic distortions plus it causes global warming and greenhouse effect. For increasing the efficiency and reliability of the system, the PV inverter becomes a vital part in the conversion of DC to AC output. This research thus presents a single phase photovoltaic inverter controlled with sinusoidal pulse-width-modulation (SPWM) and low pass filter connection between the inverter and the utility grid to reduce the harmonics due to intermittent nature of the renewable energy sources. Unipolar and Bipolar switching scheme are applied to control the magnitude and frequency of output voltage and result of both unipolar and bipolar are compared. The simulation of the proposed technique is executed by using Matlab/Simulink.</p>


2021 ◽  
pp. 46-63
Author(s):  
Mohamed K. Ratib ◽  
Ahmed Rashwan

Memory, speed, reliability, and efficiency are the main characteristics of concern in new contemporary control techniques of electric power converters. Space vector pulse width modulation (SVPWM) is a widespread digital compute-intensive control technique used in the control of power converters. This study aims to overcome the large number of calculations needed by the SVPWM algorithm, which limits its implementation in many advanced industrial applications. This paper presents a low-cost software implemented simplified SVPWM technique. The proposed strategy generates the inverter switching times in a straightforward manner with no need for complicated and time-consuming sector identification and look-up switching tables. A simulation study has been done using MATLAB/SIMULINK environment for the three-phase voltage source converter (VSC). The results in terms of total harmonic distortion (THD) in the converter line voltage are compared for the proposed technique, conventional SVPWM, and space pulse width modulation (SPWM). The execution time is reduced considerably with a slight increase in the value of THD and about 14.4 percent DC-link voltage utilization over the SPWM.


Sign in / Sign up

Export Citation Format

Share Document