scholarly journals Stress Analysis of IBS Molding Machine

2019 ◽  
Vol 8 (3) ◽  
pp. 2427-2431

Home is a place for shelter and survival for every living thing. These residential buildings are made using materials, one of which is brick. The technology of making bricks continues to grow over time. At present, bricks have been made using machines that use modern methods with the Interlocking Brick System (IBS) model. This molding machine using pneumatic to press the clay in the mold to becomes an IBS. This study aimed to determine the structural strength of the IBS printing press when given a load when printing is carried out. This research also serves to determine the most vulnerable locations on the machine structure as a concern when the load capacity will be increased. The analysis was carried out using the finite element method by using the finite element software. The simulation results obtained are, this IBS brick molding machine is safely operated for static pressure loads of 100 bar (10MPa).

Author(s):  
Ye-Chen Lai ◽  
Timothy C. S. Liang ◽  
Zhenxue Jia

Abstract Based on hierarchic shape functions and an effective convergence procedure, the p-version and h-p adaptive analysis capabilities were incorporated into a finite element software system, called COSMOS/M. The range of the polynomial orders can be varied from 1 to 10 for two dimensional linear elastic analysis. In the h-p adaptive analysis process, a refined mesh are first achieved via adaptive h-refinement. The p-refinement is then added on to the h-version designed mesh by uniformly increasing the degree of the polynomials. Some numerical results computed by COSMOS/M are presented to illustrate the performance of these p and h-p analysis capabilities.


2019 ◽  
Vol 16 (1) ◽  
pp. 14-22
Author(s):  
Sampath S. ◽  
Chithirai Pon Selvan M. ◽  
Mohamed Ameen K. ◽  
Mohamed Amin I.

PurposeThe purpose of this paper is to present the design and development of transfer seat system which aids the disabled drivers to get in and out of the car without outside help thereby reducing physical effort. The design of the model is carried out taking into account the vehicle specification and the weight of the person. After careful measurement and analysis, the required seat system parameters were estimated. The three movements associated with the system are satisfied with motors controlled by switches. The design calculations and the tests carried out are validated using the ANSYS finite element software.Design/methodology/approachThe whole process begins with the definition of the problem of eliminating the support of an additional person to help people with disabilities enter and leave a car, making it feasible and economical for the patients. Literature review includes and develops information from different sources. The research gap is identified and a necessary improvement is proposed. Design and analysis involves optimum design and calculation that achieves the efficiency, reliability and comfortable movement of the system. It also involves validation to support stress analysis in the system that is performed using ANSYS. The material supply includes the required materials taking into account factors such as strength, durability and availability. Manufacturing selects appropriate manufacturing techniques taking into account design, materials and space limitation. Operations such as welding, cutting, drilling and grinding are considered. The tests consist of performing a physical test to check the approximate load capacity of the system for a gentle, comfortable and secure comfort. Validation ensures that the results of the test coincide with the existing results of the supporting documentation. This process also involves taking corrective action and re-doing the design process to achieve the desired results.FindingsThe results that are plotted suggest that with the increase in downward force, the power required to balance it is greater. Similarly, the speed increases with increasing power. ANSYS analysis can be performed for the support structure and for obtaining deformation. The entire work can be implemented on the actual vehicle, and the time required for the patient to enter and exit could be calculated. The entire transfer system that operates by the engine can be modified, and a hydraulic system can be used to make the movements possible. The section of the rail can also be modified accordingly, and the comparison of the possible results can be carried out with the present system.Research limitations/implicationsThe entire system can be improvised by working on the mechanism which reduces the overall operating time without causing discomfort to the user when entering and exiting the car. Furthermore, the safety feature must be considered in the car to prevent the mechanism from altering the seating position of the seat, for which a mooring system can be inserted with a switch to hold it in place and release it. A powerful motor can be integrated into the mechanism to improvise the second movement, which is the deployment of the legs on the ground with the motorized wheels. The set of cast iron rails is used to support more weight without failure.Practical implicationsThe main objective is to design a system that allows a disabled person to enter and exit easily without the support or assistance of a second person. The design process had to be modified, and various methods were tried to incorporate this flawless movement onto the chassis of the car. Necessary changes have been made in the case of the material used and of the yarn to obtain the desired movement at the desired speed at the desired time. By performing these three movements, the secondary objective had to be integrated into the system to automate the door to facilitate the entry and exit of the car and to open the door simply by pressing a button. These results were taken into account to make the engine speed changes and the speed at which the chair will descend and move horizontally to ensure a safe design.Social implicationsThe developed transfer seat system can be widely used in healthcare sectors which greatly helps the movement of disabled persons.Originality/valueThe design calculations and tests carried out are validated using the ANSYS®, a finite element software.


2011 ◽  
Vol 255-260 ◽  
pp. 1879-1884
Author(s):  
Gui Yun Xia ◽  
Mei Liang Yang ◽  
Chuan Xi Li ◽  
Shang Wu Lu

Using the steel cofferdam of Xinzhao Pearl River Bridge in Guangzhou City as the engineering background, structural designing and size proposing of steel cofferdam are introduced briefly. To ensure structural safety, general purpose finite element software Ansys was used to analyze structural strength and stability. Load styles and boundary conditions were also discussed. 6 load cases with calculating model were presented.


2011 ◽  
Vol 255-260 ◽  
pp. 3371-3375
Author(s):  
Jian Hong Gao

Based on the multi-layer elastic system model, a large general used finite element software is used to analysis in the paper. The conclusion of the most distortion lying the wheel load center and the law of the distortion with basal layer rigidity & thickness change are elicited. Above contents show the finite element method possesses extensive using foreground in the pavement structure analyse.


2012 ◽  
Vol 446-449 ◽  
pp. 767-770
Author(s):  
Hui Ge Wu ◽  
Ji Hua Chen ◽  
Jie Gu

To study the seismic performance of autoclaved aerated concrete (AAC) block masonry composite wall with reinforced concrete (RC) columns, a non-linear finite element analysis has been carried out for the walls with openings using the finite element software ABAQUS. First results of finite element analysis were verified with experiment results of full-scale specimen. And then the effect of the opening’s position on seismic performance was studied with finite element analysis. The result indicates that the ultimate load capacity and ultimate displacement are both increased with the upward and outward movement of the openings.


2014 ◽  
Vol 668-669 ◽  
pp. 294-297
Author(s):  
Jiang Hui Yang ◽  
Gong Sheng Yang ◽  
Zhong Zhi Ye

Based on the structural strength and stability theory, the paper introduce the basic principle and key considerations about the roof structural analysis, especially it should pay more attention to the concrete segment pouring effects. Taking the Tianjin LNG cryogenic storage tank as an example, which is independently finished by CNOOC, The finite element method is used for the roof strength and instability mode analysis, and study the failure sequence of strength damage and instability about the roof shell structure.


2011 ◽  
Vol 250-253 ◽  
pp. 3872-3875
Author(s):  
Rong Jian Li ◽  
Wen Zheng ◽  
Juan Fang ◽  
Gao Feng Che

The influence of structural strength on the lining moment of tunnel should be properly evaluated in order to meet the engineering demand in loess area. It is essential to analyze and evaluate the lining moment of tunnel by means of the finite element method under the condition of the different local weakening of structural strength in loess. Firstly, some researches on the structural strength of loess tunnel are reviewed. Then, some different cases of the local weakening of structural strength in loess are analyzed in this paper. Numerical results not only indicate that the lining moment of tunnel tends to change obviously with the different local weakening of the structural strength, but also reveal that the weakening location of structural strength has important effect on the distribution and redistribution of the lining moment of tunnel.


2011 ◽  
Vol 143-144 ◽  
pp. 443-447
Author(s):  
Jian Feng Lu ◽  
Liang Liang Jin ◽  
Xu Dong Yang ◽  
Dong Sun

Coal mine rescue capsules, whose structural strength defines miners' safety directly, are becoming important equipments for miners' underground surviving. In order to improve the rescue capsule's strength, in this study two different kinds of stiffeners were put forward. The advantages and disadvantages of their performances were analyzed and compared using mechanical theory and the theoretical analysis was simulated and verified by using finite element software ABAQUS. The maximum deformation using two different kinds of stiffeners were 1.385mm and 2.26mm. Considering the size of deformation combined with practical factors, such as installation space and ease of processing etc., T-shaped stiffeners were finally adopted. Introduction


1994 ◽  
Vol 116 (4) ◽  
pp. 698-704 ◽  
Author(s):  
D. Bonneau ◽  
J. Absi

A numerical study of gas herringbone grooved journal bearings is presented for small number of grooves. The compressible Reynolds equation is solved by use of the Finite Element Method. The nonlinearity of the discretized equations is treated with the Newton-Raphson procedure. A comparison of the results for a smooth bearing with previously published results is made and the domain of validity of the Narrow Groove Theory is analyzed. Load capacity, attitude angle, and stiffness coefficients are given for various configurations: groove angle and thickness of grooves, bearing number, and that for both smooth and grooved member rotating.


2012 ◽  
Vol 487 ◽  
pp. 879-883
Author(s):  
Jiang Wei Wu

With the port crane getting bigger and heavier, and also moving much faster than before, the thermal effect in wheel and rail during the brake process can be a reason of the failure of port crane. In this paper, the thermal effect during the brake process of port crane is studied using the finite element method. Based on the finite element model, the ANSYS10.0 finite element software is used. The thermal effects under different coefficients are discussed. Three different slide speed of wheel, two different loads of crane, and three different frictional coefficients are applied. The importance of the different coefficients is obtained from the numerical results.


Sign in / Sign up

Export Citation Format

Share Document