scholarly journals Trust based Secure and Energy Efficient Routing using ACO for WSN

2019 ◽  
Vol 8 (4) ◽  
pp. 7278-7282

Secure and energy efficient routing is one of the major requirements of the WSN models. This is due to the resource constrained environments and remotely deployed conditions. This work proposes an effective model that ensures security and energy efficiency during the routing process in a WSN. The proposed model modifies the Ant Colony Optimization algorithm to perform routing based on these multiple objectives. The proposed model uses trust as the major component to provide security, and the randomness associated with the metaheuristic nature of the model enables uniform usage of all sensor nodes. This also extends the network lifetime, making the proposed model highly efficient and deployable in real-time networks. Experiments and comparisons also indicate that the proposed model exhibits shorter time requirements and provides more optimized paths compared to models in literature.

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 537
Author(s):  
Mohammad Baniata ◽  
Haftu Tasew Reda ◽  
Naveen Chilamkurti ◽  
Alsharif Abuadbba

One of the major concerns in wireless sensor networks (WSNs) is most of the sensor nodes are powered through limited lifetime of energy-constrained batteries, which majorly affects the performance, quality, and lifetime of the network. Therefore, diverse clustering methods are proposed to improve energy efficiency of the WSNs. In the meantime, fifth-generation (5G) communications require that several Internet of Things (IoT) applications need to adopt the use of multiple-input multiple-output (MIMO) antenna systems to provide an improved capacity over multi-path channel environment. In this paper, we study a clustering technique for MIMO-based IoT communication systems to achieve energy efficiency. In particular, a novel MIMO-based energy-efficient unequal hybrid clustering (MIMO-HC) protocol is proposed for applications on the IoT in the 5G environment and beyond. Experimental analysis is conducted to assess the effectiveness of the suggested MIMO-HC protocol and compared with existing state-of-the-art research. The proposed MIMO-HC scheme achieves less energy consumption and better network lifetime compared to existing techniques. Specifically, the proposed MIMO-HC improves the network lifetime by approximately 3× as long as the first node and the final node dies as compared with the existing protocol. Moreover, the energy that cluster heads consume on the proposed MIMO-HC is 40% less than that expended in the existing protocol.


Author(s):  
Nandoori Srikanth ◽  
Muktyala Sivaganga Prasad

<p>Wireless Sensor Networks (WSNs) can extant the individual profits and suppleness with regard to low-power and economical quick deployment for numerous applications. WSNs are widely utilized in medical health care, environmental monitoring, emergencies and remote control areas. Introducing of mobile nodes in clusters is a traditional approach, to assemble the data from sensor nodes and forward to the Base station. Energy efficiency and lifetime improvements are key research areas from past few decades. In this research, to solve the energy limitation to upsurge the network lifetime, Energy efficient trust node based routing protocol is proposed. An experimental validation of framework is focused on Packet Delivery Ratio, network lifetime, throughput, energy consumption and network loss among all other challenges. This protocol assigns some high energy nodes as trusted nodes, and it decides the mobility of data collector.  The energy of mobile nodes, and sensor nodes can save up to a great extent by collecting data from trusted nodes based on their trustworthiness and energy efficiency.  The simulation outcome of our evaluation shows an improvement in all these parameters than existing clustering and Routing algorithms.<strong></strong></p>


2021 ◽  
Vol 10 (5) ◽  
pp. 2643-2651
Author(s):  
Noor Alhuda F. Abbas ◽  
Jaber H. Majeed ◽  
Waleed Khalid Al-Azzawi ◽  
Adnan Hussein Ali

There are certain challenges faced with wireless sensor networks (WSNs) performances, consumption can be seen amongst all these challenges as a serious area of research. Data from sensor nodes are transmitted by most WSN energy either among many nodes or to the base station (BS), and due this connection, several routing protocols were developed for supporting in data transmission in the WSNs. Extending network lifetime in an operational environment is the major objective of the wireless sensor network. Charging or exchanging sensor node batteries is almost impossible. Energy balancing and energy efficiency are significant research scopes as per designing of routing protocols aimed at self-organized WSNs. A heterogeneous WSN is one where every node has different amount of energy linked to it before it is deployed in a network. Therefore, different energy efficient routing protocols have been proposed which enables lesser consumption of energy, longer stability period which leads to the network lifetime increasing. In this study, the average energy of a WSN is computed after every logical round of operation for our protocol-HPEEA and compare it with two well-known heterogeneous protocols namely-SEP and CCS. At the end of the considered number of logical operations, MATLAB with simulation results confirm that HPEEA protocol have a reduction in the energy consumption compared to other protocols.


Author(s):  
Tanya Pathak ◽  
Vinay Kumar Singh ◽  
Anurag Sharma

In the recent years, an efficient design of a Wireless Sensor Network has become important in the area of research. The major challenges in the design of Wireless Sensor Network is to improve the network lifetime. The main difficulty for sensor node is to survive in that monitoring area for the longer time that means there is a need to increase the lifetime of the sensor nodes by optimizing the energy and distance. There are various existing routing protocols in which optimal routing can be achieved like Data-Centric, Hierarchical and Location-based routing protocols. In this paper, new power efficient routing protocol is being proposed that not only select the shortest path between the source node and sink node for data transmission but also maximizes the lifetime of the participating nodes by selecting the best path for sending the data packet across the network. The main objective of this research is to develop a faster algorithm to find the energy efficient route for Wireless Sensor Network. Simulation results shows that this strategy achieves long network lifetime when compared to the other standard protocols.


The technological advances in wireless communication systems and digital data processing techniques has given rise to many innovative intelligent networks. One such network is wireless sensor network (WSN). In recent past, huge growth has been perceived in the applications of WSN. In wireless sensor network, the battery powered sensor nodes are scattered in a monitoring area and it is impossible to replace the batteries of sensor nodes after deployment. Therefore, energy efficiency remains a prime concern in design of WSNs. The routing protocols help to find energy efficient routes and increases the lifetime of WSNs. The cluster-based routing techniques play an important role in design of energy efficient WSNs. However, authors analyzed two types of sensor networks in the literature such as homogeneous and heterogeneous networks. In homogeneous clustering, all sensor nodes possess same level of initial energy and cluster head (CH) formation probability of each node in such networks remains equal. In heterogeneous clustering, the nodes are bifurcated into three energy levels such as normal node, advanced node and super node. Therefore, the CH formation probability of a node in such network depends on the type of node. This paper presented a survey on recent energy efficient routing protocols in homogeneous as well as heterogeneous wireless sensor networks. The energy efficient routing protocols are classified based on some quality of service (QoS) metrics such as energy efficiency, network lifetime, network stability, cluster head selection threshold and heterogeneity levels.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 500
Author(s):  
E. Laxmi Lydia ◽  
A. Arokiaraj Jovith ◽  
A. Francis Saviour Devaraj ◽  
Changho Seo ◽  
Gyanendra Prasad Joshi

Presently, a green Internet of Things (IoT) based energy aware network plays a significant part in the sensing technology. The development of IoT has a major impact on several application areas such as healthcare, smart city, transportation, etc. The exponential rise in the sensor nodes might result in enhanced energy dissipation. So, the minimization of environmental impact in green media networks is a challenging issue for both researchers and business people. Energy efficiency and security remain crucial in the design of IoT applications. This paper presents a new green energy-efficient routing with DL based anomaly detection (GEER-DLAD) technique for IoT applications. The presented model enables IoT devices to utilize energy effectively in such a way as to increase the network span. The GEER-DLAD technique performs error lossy compression (ELC) technique to lessen the quantity of data communication over the network. In addition, the moth flame swarm optimization (MSO) algorithm is applied for the optimal selection of routes in the network. Besides, DLAD process takes place via the recurrent neural network-long short term memory (RNN-LSTM) model to detect anomalies in the IoT communication networks. A detailed experimental validation process is carried out and the results ensured the betterment of the GEER-DLAD model in terms of energy efficiency and detection performance.


Author(s):  
G. M. Tamilselvan Tamilselvan ◽  
K. Gandhimathi

Wireless Sensor Network (WSN) consists of low cost tiny sensor nodes with limited energy resource, so it is a tedious task to develop energy efficient routing schemes that enhances the network lifetime. In WSN, clustering is used to improve the efficiency of finite energy resource. LEACH protocol is one of the widely used clustering techniques in WSN. So, in this paper, an energy efficient LEACH protocol is designed with network coding for WSN. Initially, the clusters are formed with the LEACH protocol, where it uses the residual energy metric and drain rate to select the cluster heads.  Since network coding is an optimal technique to enhance the network performance by minimizing the number of transmissions, it is incorporated into the LEACH Protocol, where it has been applied at the cluster head levels. Furthermore, the next level of network coding is processed at a node by selecting any of the nodes as a master node. The simulation results show that the proposed scheme performs better than the EE-LEACH and LEACH protocol in terms of network lifetime, packet delivery ratio.


Author(s):  
Karuna Babber

Background: The advent of wireless sensor networks makes it possible to track the events even in the remotest areas that too without human intervention. But severe resource constraints, generally energy of sensor nodes push researchers worldwide to develop energy efficient protocols in order to accomplish the application objectives of these networks. Objective: However, till date there is no energy efficient routing protocol which provides uniformity with maximum resource utilization for WSNs. Methods: In this paper, a Uniform Clustering Algorithm for Energy Efficiency in Wireless Sensor Networks (UCAEE) has been proposed. UCAEE is a base station controlled algorithm where entire sensing area is partitioned into uniform clusters. The motive of the algorithm is to split the sensing area into uniform clusters and to select cluster heads and gate-way nodes within each cluster so that the network energy can be balanced in a best possible way. Conclusion: UCAEE achieves minimum energy consumption during data transmission and reception. Results: Simulation results indicate that proposed UCAEE algorithm conserves more energy than its contemporary clustering algorithms like LEACH, PEGASIS and SECA and promises better network lifetime of wireless sensor networks.


Sign in / Sign up

Export Citation Format

Share Document