scholarly journals Petroleum Physical Properties Prediction Application in Enhanced Oil Recovery Process

Author(s):  
Harry Budiharjo Sulistyarso ◽  
◽  
Dyah Ayu Irawati ◽  
Joko Pamungkas ◽  
Indah Widiyaningsih ◽  
...  

The Enhanced Oil Recovery (EOR) process is one of the ways in the petroleum exploitation process so that thick oil can be lifted to the surface and produced. The EOR process referred to in this study is the EOR process carried out in previous studies at the EOR laboratory of UPN Veteran Yogyakarta Indonesia by adding biosurfactants and adjusting the temperature. In laboratory experiments, each time an amount of biosurfactant concentration is added and the temperature is adjusted, the calculation must be done repeatedly to determine the amount of viscosity, interfacial tension (IFT), and density. This experiments takes a long time, requires high cost and variety limitation of the condition. The previous research has succeeded in building a model with multivariate polynomial regression equations to predict the value of the physical properties of crude oil from existing data then classify it into three categories using Naive Bayes, i.e., light oil, medium oil, and heavy oil. The physical properties of petroleum measured in the research are viscosity, interfacial tension, and density. The model uses laboratory data which are taken from the test results of Pertamina's KW-55 well as validation. The validation result shows that Multivariate Polynomial Regression has succeeded in predicting the value of viscosity, interfacial tension, and density with error values ranging from 0% to 1% from the sample data. With a low error value, the application can make forecasting with more variable conditions. The model still cannot be used independently without the Python environment, so to be used easily by more users, the model must be built into an independent application that can be installed on the user's device. In this research, the prediction application of petroleum physical properties has been built. The application is made using the Multivariate Polynomial Regression method according to the model in the previous study to predict the physical properties of petroleum, then uses Naïve Bayes to classify the oil. The application completed the several adjustment to shift from model to application, including user interface, system, and database adjustments.

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3045
Author(s):  
Farzaneh Rezaei ◽  
Amin Rezaei ◽  
Saeed Jafari ◽  
Abdolhossein Hemmati-Sarapardeh ◽  
Amir H. Mohammadi ◽  
...  

Carbon dioxide-based enhanced oil-recovery (CO2-EOR) processes have gained considerable interest among other EOR methods. In this paper, based on the molecular weight of paraffins (n-alkanes), pressure, and temperature, the magnitude of CO2–n-alkanes interfacial tension (IFT) was determined by utilizing soft computing and mathematical modeling approaches, namely: (i) radial basis function (RBF) neural network (optimized by genetic algorithm (GA), gravitational search algorithm (GSA), imperialist competitive algorithm (ICA), particle swarm optimization (PSO), and ant colony optimization (ACO)), (ii) multilayer perception (MLP) neural network (optimized by Levenberg-Marquardt (LM)), and (iii) group method of data handling (GMDH). To do so, a broad range of laboratory data consisting of 879 data points collected from the literature was employed to develop the models. The proposed RBF-ICA model, with an average absolute percent relative error (AAPRE) of 4.42%, led to the most reliable predictions. Furthermore, the Parachor approach with different scaling exponents (n) in combination with seven equations of state (EOSs) was applied for IFT predictions of the CO2–n-heptane and CO2–n-decane systems. It was found that n = 4 was the optimum value to obtain precise IFT estimations; and combinations of the Parachor model with three-parameter Peng–Robinson and Soave–Redlich–Kwong EOSs could better estimate the IFT of the CO2–n-alkane systems, compared to other used EOSs.


2018 ◽  
Vol 55 (3) ◽  
pp. 252-257 ◽  
Author(s):  
Derong Xu ◽  
Wanli Kang ◽  
Liming Zhang ◽  
Jiatong Jiang ◽  
Zhe Li ◽  
...  

Author(s):  
Ahmed Ragab ◽  
Eman M. Mansour

The enhanced oil recovery phase of oil reservoirs production usually comes after the water/gas injection (secondary recovery) phase. The main objective of EOR application is to mobilize the remaining oil through enhancing the oil displacement and volumetric sweep efficiency. The oil displacement efficiency enhances by reducing the oil viscosity and/or by reducing the interfacial tension, while the volumetric sweep efficiency improves by developing a favorable mobility ratio between the displacing fluid and the remaining oil. It is important to identify remaining oil and the production mechanisms that are necessary to improve oil recovery prior to implementing an EOR phase. Chemical enhanced oil recovery is one of the major EOR methods that reduces the residual oil saturation by lowering water-oil interfacial tension (surfactant/alkaline) and increases the volumetric sweep efficiency by reducing the water-oil mobility ratio (polymer). In this chapter, the basic mechanisms of different chemical methods have been discussed including the interactions of different chemicals with the reservoir rocks and fluids. In addition, an up-to-date status of chemical flooding at the laboratory scale, pilot projects and field applications have been reported.


2021 ◽  
Author(s):  
Rini Setiati ◽  
Muhammad Taufiq Fathaddin ◽  
Aqlyna Fatahanissa

Microemulsion is the main parameter that determines the performance of a surfactant injection system. According to Myers, there are four main mechanisms in the enhanced oil recovery (EOR) surfactant injection process, namely interface tension between oil and surfactant, emulsification, decreased interfacial tension and wettability. In the EOR process, the three-phase regions can be classified as type I, upper-phase emulsion, type II, lower-phase emulsion and type III, middle-phase microemulsion. In the middle-phase emulsion, some of the surfactant grains blend with part of the oil phase so that the interfacial tension in the area is reduced. The decrease in interface tension results in the oil being more mobile to produce. Thus, microemulsion is an important parameter in the enhanced oil recovery process.


2018 ◽  
Vol 124 (2) ◽  
Author(s):  
Hassan Soleimani ◽  
Mirza Khurram Baig ◽  
Noorhana Yahya ◽  
Leila Khodapanah ◽  
Maziyar Sabet ◽  
...  

2020 ◽  
Author(s):  
Nur Asyraf Md Akhir ◽  
Afif Izwan Abd Hamid ◽  
Ismail Mohd Saaid ◽  
Ahmad Kamal Idris ◽  
Nik Nor Azrizam Nik Norizam ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1073 ◽  
Author(s):  
Goshtasp Cheraghian ◽  
Sara Rostami ◽  
Masoud Afrand

Nanoparticles (NPs) are known as important nanomaterials for a broad range of commercial and research applications owing to their physical characteristics and properties. Currently, the demand for NPs for use in enhanced oil recovery (EOR) is very high. The use of NPs can drastically benefit EOR by changing the wettability of the rock, improving the mobility of the oil drop and decreasing the interfacial tension (IFT) between oil/water. This paper focuses on a review of the application of NPs in the flooding process, the effect of NPs on wettability and the IFT. The study also presents a review of several investigations about the most common NPs, their physical and mechanical properties and benefits in EOR.


2015 ◽  
Vol 9 (9) ◽  
pp. 722-726 ◽  
Author(s):  
S.N. Hosseini ◽  
M.T. Shuker ◽  
Z. Hosseini ◽  
T. Joao Tomocene ◽  
A. Shabib-asl ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Kenny Ganie ◽  
Muhammad A Manan ◽  
Arif Ibrahim ◽  
Ahmad Kamal Idris

The higher cost of chemical surfactants has been one of the main reasons for their limited used in enhanced oil recovery (EOR) process. Hence, the reason for developing lignin-based surfactant is to lower the cost of chemicals as it does not tie to the price of crude oil as compared to petroleum-based surfactants. Besides, lignin is biodegradable and easily extracted from plant waste. The objectives of this study are to determine the formulations of the lignin-based surfactant for EOR applications and to determine the oil recovery performance of the formulated surfactants through surfactant flooding. The lignin-based surfactants were formulated by mixing the lignin with the amine (polyacrylamide or hexamethylenetetramine) and the surfactant sodium dodecylbenzenesulfonate in a 20,000 ppm NaCl brine. Interfacial tension (IFT) of the formulated lignin-based surfactant is measured at ambient temperature using the spinning drop method. The displacement experiments were conducted at room temperature in glass beads pack holders filled with glass beads, saturated with paraffin and brine. The results of the study showed that the best formulation of lignin-based surfactant is using hexamethylenetetramine as the amine, lignin, and sodium dodecylbenzenesulfonate at 2% total active concentration. The oil recovery and interfacial tension using the lignin amine system is comparable with the commercial petroleum sulfonate system.


Sign in / Sign up

Export Citation Format

Share Document