scholarly journals Time and Area Efficient 2-D DWT using Multiplier-less Canonic Signed Digit Technique

2019 ◽  
Vol 8 (4) ◽  
pp. 5425-5429

A few models have been recommended for proficient VLSI usage of 2-D DWT for constant applications. It is disc overed that multipliers devour more chip zone and expands multifaceted nature of the DWT design. Multiplier-less equipment usage approach gives an answer for diminish chip region, lower equipment intricacy and higher throughput of calculation of the DWT design.The proposed design outline is (i) priority must be given for memory complexity optimization over the arithmetic complexity optimization or reduction of cycle period and (ii) memory utilization efficiency to be considered ahead of memory reduction due to design complexity of memory optimization method. Based on the proposed design outline four separate design approaches and concurrent architectures are presented in this thesis for area-delay and power efficient realization of multilevel 2-D DWT.In this theory a multiplier-less VLSI engineering is proposed utilizing new dispersed number juggling calculation named CSD. We show that CSD is an effective engineering with adders as the principle part and free of ROM, duplication, and subtraction. The proposed design utilizing CSD gives less postponement and least number of cut thought about the current engineering. The reenactment was performed utilizing XILINX 14.1i and ModelSim test system.

2010 ◽  
Vol 143-144 ◽  
pp. 1046-1050
Author(s):  
Jing Yu Han ◽  
Wang Qun ◽  
Chuan You Li ◽  
Zhang Hong Tang ◽  
Mei Wu Shi

In this paper, a new genetic algorithm method to optimize the frequency selective surface(FSS) is presented. The optimization speed and definition are promoted by limiting the parameter range and changing the genetic basis. A new cost function is introduced to optimize the multi-frequency of FSS by multi-object optimization (MO). The cirque element was optimized by the optimization method, fabricated by the selective electroless plating on fabric and measured by the arch test system. Test result proves the simulated result coincide with measured result. Result shows that it’s possible to realize different optimizations based on the various applying by this method.


2020 ◽  
Vol 167 ◽  
pp. 05008 ◽  
Author(s):  
A Arya ◽  
SPS Mathur ◽  
M Dubey

As a major Green House Gases (GHG) producer, CO2 in particular, the electricity industry’s emissions have turned in to a matter of immense concern in many countries, especially in India. India’s economy and fast economic development has attracts the attention of the world. Emission trading schemes (ETS) and renewable energy support schemes (RESS) are implemented by the various developed countries to alleviate the affect of GHG emissions. In this paper, an optimization based market simulation approach is proposed with the consideration of emission trading schemes and renewable support schemes. To simulate the bidding strategy and for profit maximization, a particle swarm optimization (PSO) algorithm is used. As above problem is a multi-objective optimization problem, Where, in the first level each Genco submit the bid to the independent system operator and in the next level a optimization method is used for the determination of optimal bidding with the implementation of emission trading schemes and renewable support schemes. It is assumed that each generator should submit bid as a price taker’s in sealed auction based on pay-as-bid market clearing price mechanism. The practicability of proposed optimization method is checked by an IEEE-30 bus test system consists of six suppliers.


2019 ◽  
Vol 288 ◽  
pp. 01007
Author(s):  
Liao Hongbo ◽  
Yang Dan ◽  
Yin Fenglong ◽  
Liang Xiaodong ◽  
Li Erkang ◽  
...  

In order to further increase the volume, reduce the weight and manufacturing cost, the key structural parameters of thin-walled metal packing container are optimized. The instability conditions under circumferential external pressure and axial load are analyzed, a mathematical model with the constraint of critical instability strength, the maximum volume and minimum mass as the objective is constructed. Multi-objective optimization method with nonlinear constraints is used to solve the key structural parameters, such as wall thickness, diameter and height, and the optimization result is calculated by fgoalattain() function in the Matlab optimization toolbox. The instability pressure test system is constructed, the instability pressure of the optimized thin-wall metal packing container is tested. The results show that the unstable pressure is higher than 120kPa, which are better than the design index.


VLSI Design ◽  
2001 ◽  
Vol 12 (2) ◽  
pp. 139-150 ◽  
Author(s):  
Youngsoo Shin ◽  
Kiyoung Choi ◽  
Takayasu Sakurai

Power efficient design of real-time embedded systems based on programmable processors becomes more important as system functionality is increasingly realized through software. We address a power optimization method for real-time embedded applications on a variable speed processor. The method combines off-line and on-line components. The off-line component determines the lowest possible maximum processor speed while guaranteeing deadlines of all tasks. The on-line component dynamically varies the processor speed or bring a processor into a power-down mode to exploit execution time variations and idle intervals. Experimental results show that the proposed method obtains a significant power reduction across several kinds of applications.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256190
Author(s):  
Zhen Liu ◽  
Aobo Zhang ◽  
Jiangping Xu ◽  
Cuiying Zhou ◽  
Lihai Zhang

The geosynthetic-reinforced pile-supported embankment (GRPSE) system has been widely used in road construction on soft soil. However, the application of the GRPSE system is often restricted by its high-cost. The reason is that they are designed for bearing control as defined in the past. During the construction process, the pile spacing is reduced to meet the requirements for the embankment bearing capacity and settlement. These factors cause the membrane effect to not be exploited. As a result, the utilization efficiency of the bearing capacity of the soil between the piles is low and the project cost is high. Therefore, in order to solve the problem of insufficient bearing capacity of soil between piles, we established a settlement calculation model of soil between piles based on membrane effect. The model considers the relationship between the geosynthetic reinforcement (GR) and the pile spacing. Based on the obtained model, a method for optimizing the soil bearing capacity of GRPSEs is proposed. By controlling the settlement of soil between piles, the bearing capacity of soil between piles and the membrane effect of embankment can be fully utilized. Therefore, the project cost can be reduced. Finally, the method is applied to field tests for comparison. The results show that the method is reasonable and applicable. This method can effectively exploit the membrane effect and improve the utilization efficiency of the bearing capacity of the soil between piles. An economical and reasonable arrangement scheme for the piles and GR was obtained. This scheme can not only ensure the safety of the project, but also fully utilize the bearing capacity of the soil between the piles and provide a new method for engineering design.


Author(s):  
Muhira Dzar Faraby ◽  
Ontoseno Penangsang ◽  
Rony Seto Wibowo ◽  
Andi Fitriati

<span lang="EN-US">Power quality has an important role in the distribution of electrical energy. The use of non-linear load can generate harmonic spread which can reduce the power quality in the radial distribution system. This research is in form of coordinated planning by combining distributed generation placement, capacitor placement and network reconfiguration to simultaneously minimize active power losses, total harmonic distortion (THD), and voltage deviation as an objective function using the particle swarm optimization method. This optimization technique will be tested on two types of networks in the form 33-bus and 69-bus IEEE Standard Test System to show effectiveness of the proposed method. The use of MATLAB programming shows the result of simulation of increasing power quality achieved for all scenario of proposed method.</span>


2022 ◽  
Vol 23 (2) ◽  
pp. 817
Author(s):  
Xiaoyin Zhang ◽  
Zhanbo Xiong ◽  
Ming Li ◽  
Nan Zheng ◽  
Shengguo Zhao ◽  
...  

Regulation of microbial urease activity plays a crucial role in improving the utilization efficiency of urea and reducing nitrogen emissions to the environment for ruminant animals. Dealing with the diversity of microbial urease and identifying highly active urease as the target is the key for future regulation. However, the identification of active urease in the rumen is currently limited due to large numbers of uncultured microorganisms. In the present study, we describe an activity- and enrichment-based metaproteomic analysis as an approach for the discovery of highly active urease from the rumen microbiota of cattle. We conducted an optimization method of protein extraction and purification to obtain higher urease activity protein. Cryomilling was the best choice among the six applied protein extraction methods (ultrasonication, bead beating, cryomilling, high-pressure press, freeze-thawing, and protein extraction kit) for obtaining protein with high urease activity. The extracted protein by cryomilling was further enriched through gel filtration chromatography to obtain the fraction with the highest urease activity. Then, by using SDS-PAGE, the gel band including urease was excised and analyzed using LC-MS/MS, searching against a metagenome-derived protein database. Finally, we identified six microbial active ureases from 2225 rumen proteins, and the identified ureases were homologous to those of Fibrobacter and Treponema. Moreover, by comparing the 3D protein structures of the identified ureases and known ureases, we found that the residues in the β-turn of flap regions were nonconserved, which might be crucial in influencing the flexibility of flap regions and urease activity. In conclusion, the active urease from rumen microbes was identified by the approach of activity- and enrichment-based metaproteomics, which provides the target for designing a novel efficient urease inhibitor to regulate rumen microbial urease activity.


Author(s):  
Hardiansyah Hardiansyah

<p>In this paper, a modified artificial bee colony (MABC) algorithm is presented to solve non-convex dynamic economic dispatch (DED) problems considering valve-point effects, the ramp rate limits and transmission losses. Artificial bee colony algorithm is a recent population-based optimization method which has been successfully used in many complex problems. A new mutation strategy inspired from the differential evolution (DE) is introduced in order to improve the exploitation process. The feasibility of the proposed method is validated on 5 and 10 units test system for a 24 h time interval. The results are compared with the results reported in the literature. It is shown that the optimum results can be obtained more economically and quickly using the proposed method in comparison with the earlier methods.</p>


Author(s):  
Swathisriranjani M ◽  
Mohananthini K ◽  
Ranjitha M ◽  
Baskar S ◽  
Kavitha D

<p>In this paper, a problem of allocation and sizing of multiple active power-line conditioners (aplcs) in power systems is handled with novel formulation. The utilized objective function comprises two main factors such as reduction of total harmonic distortion and the total cost of active power-line conditioners (aplcs). The formulated problem is solved by optimization technique SHUFFLE FROG LEAP ALGORITHM(SHFLA) using MATLAB. To evaluate the competence of the proposed formulation, the IEEE 18-bus  distorted distribution test system is employed and investigated with various number of aplcs placement. These cases are based on the discrete and limited size for aplcs, requiring the optimization method to solve the constrained and discrete nonlinear problems. The comparison of results in this paper showed that the proposed SHFLA is the most effective result among others in determining optimum location and size of APLC in distribution systems.</p>


2012 ◽  
Vol 170-173 ◽  
pp. 2329-2334
Author(s):  
Hong Xiang Chai ◽  
Ke Deng ◽  
Fang Zhao

According to the extremely uneven situation of monthly rainfall in China, in order to both improve utilization efficiency of non-traditional water resources and realize economy applicable in green residential districts, an optimization method of monthly water dynamic balance of non-traditional water resources utilization in green building based on landscape water regulation function was put forward. The optimization method was made full use of large capacity of landscape water regulation function, combined with monthly water consumption law between supply and demand of non-traditional water resources in districts. And this method was applied in a green residential demonstration district in western China.


Sign in / Sign up

Export Citation Format

Share Document