scholarly journals Strength Analysis on Natural Fibre Composite Banana and Sisal Fibres with Epoxy Resin

2019 ◽  
Vol 8 (4) ◽  
pp. 3948-3954

The tensile strength and bending strength variation on the basis of change in mass of HEMP and SISAL fiber content in the composite. The scope of work is constraint to hemp and sisal fibre composite with epoxy as resin. Study of the characteristics of hemp and sisal fiber, to fabricate the composite of hemp and sisal fiber with epoxy resin and increase the strength of hemp fibers composited with sisal fibers using epoxy to finding the variation of tensile strength of the natural fiber composite- Hemp & Sisal with epoxy resin with different composition and finding the variation of bending strength of the natural fiber compositeHemp and Sisal with epoxy resin with different composition and compare the mechanical properties of Hemp – Sisal composite with glass fiber.

2013 ◽  
Vol 718-720 ◽  
pp. 63-68 ◽  
Author(s):  
Raja R. Niranjan ◽  
S. Junaid Kokan ◽  
R. Sathya Narayanan ◽  
S. Rajesh ◽  
V.M. Manickavasagam ◽  
...  

The natural fibre composite materials are nowadays playing a vital role in replacing the conventional and synthetic materials for industrial applications. This paper proposes a natural fiber composite made of Abaca fibre as reinforcing agent with Epoxy resin as the matrix, manufactured using Hand Lay-up method. Glass Fiber Reinforced Plastics (woven rovings) are used to improve the surface finish and impart more strength and stiffness to natural fibers. In this work, the fibers are arranged in alternative layers of abaca in horizontal and vertical orientation. The mechanical properties of the composite are determined by testing the samples for tensile and flexural strength. It is observed that the tensile strength of the composite material is dependent on the strength of the natural fiber and also on the interfacial adhesion between the reinforcement and the matrix. The composite is developed for automobile dashboard/mudguard application. It may also be extended to biomedical, electronics and sports goods manufacturing. It can also be used in marine products due to excellent resistance of abaca to salt water damage since the tensile strength when it is wet.


2015 ◽  
Vol 1115 ◽  
pp. 349-352 ◽  
Author(s):  
Md. Masudur R. Abir ◽  
S.M. Kashif ◽  
Md. Abdur Razzak

To achieve sustainability in the composite industry, natural fibers must be able to replace synthetic fibers .In this work the tensile properties of sisal fibers were determined. The relationships between tensile strength, young modulus, failure to strain and gage length was studied. Also variation in tensile strength was quantified using statistical analysis. The relationship between Weibull statistics and gage length were also investigated. The strength of the sisal fiber obtained in this work was between 255-377 MPA and decreased with an increase in gage length. The Weibull modulus obtained was similar for all gage lengths and was around 2.5.


Author(s):  
Sujeet Kumar ◽  
Vidya Tilak B. ◽  
Rakesh Kumar Dutta

The present work primarily investigates the unconfined compressive strength, the tensile load-diametral strain, the toughness characteristics and the shear strengths of bentonite-lime-phosphogypsum-treated sisal fibre composite. The unconfined compressive strengths and tensile strengths were obtained using the unconfined compressive test and indirect tensile test respectively. The results revealed that the unconfined compressive stress, the deviator stress and the tensile load at failure of bentonite-lime-phosphogypsum composite with untreated sisal fibres could be improved by the successive chemical treatment with sodium periodate, p-aminophenol and sodium hydroxide. The brittleness index and deformability index indicated a change from the brittle to ductile behavior of the bentonite-lime-phosphogypsum-untreated sisal fiber composite, with the chemical treatment.


The importance of natural fiber reinforced composites is rapidly developing both in terms of engineering application and research field. The aim of this investigation is conducting an experiment to obtain the water absorption, physical and Mechanical properties of hybrid composite was fabricated from (False Banana Fiber) FBF and (Sisal Fiber) SF through general purpose (GP) resin-hardener mixture. The samples fabrication procedure was carried out by varying FBF and SF weight ratio to see its effect of mechanical and physical properties. Three samples (FBF: SF) i.e., 1:1 ratio, 3:1 ratio and 1:3 ratio with ply orientation as the reinforcement material. Then, tensile strength, compression strength, flexural strength water absorption percentage and density was conducted according to ISO and ASTM standards. The results show that the overall tensile strength shows a 1:3 ratio have shown 69 MPa which are higher than 1:1 ratio and 3:1 ratio. 3:1 ratio. In a compression strength test also 12.30 MPa which was higher result is obtained from 3:1 ratio. For both flexural(bending) strength and water absorption (for ordinary tap water and rainwater) test 380 MPa and (2.64 % and 3.07 %) respectively resulted, which are relatively less than from 1:1 ratio and 3:1ratio.


2021 ◽  
Vol 12 (2) ◽  
pp. 297-304
Author(s):  
Andi Idhil Ismail ◽  
◽  
Rasidah Rasidah ◽  
Ridhwan Haliq

The amount of rubber seed waste in Indonesia is highly yielded as a side product from a large amount of rubber trees plantation. The rubber seed was not processed become the usefull application yet, thus it becomes a high volume of waste in each year. An initiative should be done to turn it as a practical material. The rubber seed is potential for natural composite along with the increasing attention toward natural composite application.This work aims to produce natural fibre composite based on rubber seed and characterize it's mechanical properties. In this work, the rubber seed natural composite produced by using the hand lay-up method. Polyester resin YUCALAC BQTN-157 was used as the matrix with the addition of 1% MEKP (Methyl-Ethyl-Ketone- Peroxide) as the catalyst. Mechanical properties of the composite were examined by using a tensile and bending test. Additionally, the water absorption test was performed according to the ASTM D 570. The result showed that the tensile and bending strength decrease with increasing the filler composition, which is added in the composite. The composite, which has the filler composition of 40% was generate the highest tensile strength. In contrast, the lowest tensile strength appeared at the composite with a filler of 60%. The bending strength trend also behaves similarly with the tensile strength as the filler composition increased. Water absorption ability of composites displays the acceptable value as it shows within the range of 2.22-2.96%.


Author(s):  
Agung Efriyo Hadi ◽  
Tezara Cionita ◽  
Deni Fajar Fitriyana ◽  
Januar Parlaungan Siregar ◽  
Ahmed Nurye Oumer ◽  
...  

Incorporating natural fibre as reinforcement in the polymer matrix has shown a negative effect since the natural fibre is hydrophilic. The natural fibre easily absorbs water which causes an effect on the mechanical properties of the composites. The objective of this paper is to investigate the water absorption behaviour of hybrid jute-roselle woven fibre reinforced unsaturated polyester composite and the effect of water absorption in terms of tensile strength and tensile modulus. The effect of hybrid composite on the thickness swelling will be tested. The fabrication method used in this study is the hand lay-up technique to fabricate 2-layer and 3-layer composites with layering sequences of woven jute (J)/roselle (Ro) fibre. The results of the study showed that pure roselle fibres for 2 and 3-layer composites have the highest water absorption behaviour 3.86% and 5.51%, respectively, in 28 days) as well as thickness swelling effect, whereas hybrid J-Ro and J-J-Ro composites showed the least water absorption (2.65% and 3.76%, respectively) in 28 days) in both the tests. The hybridisation between jute and roselle fibres reduced water absorption behaviour and improved the fibres dimensional stability. The entire composites showed a decreasing trend for both tensile strength and tensile modulus strength after five weeks of water immersion. Jute fibre composite hybridised with roselle fibre can be used to reduce the total reduction of both tensile strength and tensile modulus throughout the whole immersion period. Moreover, the tensile testing showed that jute fibre composite hybridised with roselle fibre have produced the strongest composite with the highest tensile and modulus strength compared to other types of composites. The hybridisation of diverse fibre reinforcements aids in minimising the composite water absorption and thickness swelling, hence reducing the effect of tensile characteristics.


2021 ◽  
Author(s):  
Chenglin Zhang ◽  
Guohua Gu ◽  
Shuhua Dong ◽  
Zhitao Lin ◽  
Chuncheng Wei ◽  
...  

Abstract In this study, the nonisothermal differential scanning calorimetry (DSC) was carried out to evaluate the curing reaction of fiber/epoxy laminates. The optimal curing process of the prepreg was obtained by T-β extrapolation method and nth-order reaction curing kinetic equation. The bending strength, impact strength and thermodynamic properties of the composite laminates with different ply orientations were investigated, respectively. The results show that the apparent activation energy and the reaction order of the prepregs are 82.89 kJ/mol and 0.92, respectively. The curing process of carbon fiber/epoxy resin prepreg is 130 ℃ /60min + 160 ℃/30 min. The bending strength of [0]10 laminate is 1948.3 MPa, which is 11.8 times higher than that of [+ 45/-45]5s laminate, and 96.4% higher than that of [0/90]5s laminate. The impact strength of [0]10 laminate is higher than that of [+ 45/-45]5s and [0/90]5s laminates. The glass transition temperature (Tg) of the laminates is 142 ~ 146 ℃, and the loss factor of [0]10 laminate is significantly higher than that of [+ 45/-45]5s and [0/90]5s laminates. This research provides a theoretical basis for the further application of prepregs to fiber composite materials.


Kevlar fibres are para aramid fibres rather than Meta-Aramid structure of Nomex. These fibres have high tensile strength, tensile modulus and heat resistance .Kevlar is about five times lighter than steel in terms of the same tensile strength. In fact, it is the strongest textile fibre available today. It is therefore used in Radial tyres, Conveyor belts, Aircraft parts and mainly used in Ballistics and Frictional products. The aim of this investigation is to increase the mechanical properties of composite material of Kevlar fibre. The Kevlar fibre is reinforced with the banana fibre,which is a Natural Fibre and Aluminium Mesh using Epoxy resin. The Mechanical Properties of Newly formed Composite material using Kevlar Fibre is improved and find its application in a higher position while comparing to the Kevlar Fibre


2019 ◽  
Vol 821 ◽  
pp. 465-471 ◽  
Author(s):  
Siew Choo Chin ◽  
Jacky Neing Sheng Moh ◽  
Shu Ing Doh ◽  
Fadzil Mat Yahaya ◽  
Jolius Gimbun

Fiber reinforced polymer (FRP) is widely used in the construction industry for structural strengthening due to their outstanding mechanical properties. However, the production of synthetic fibers such as FRP is detrimental to the environment. Alternatively, natural fiber composite may be used as external strengthening material. This paper presents the potential of bamboo fiber composite plate (BFCP) to strengthen the reinforced concrete (RC) beams in flexure. The bamboo of species Dendrocalamus asper was used to produce the fiber and fiber-to-volume ratio was set at 2:5. The composite plate was fabricated by binding bamboo fibers with epoxy using a hand-lay-up method. The flexural and tensile strength of the BFCP was measured and all the beams were tested to failure under four-point bending test. It was found that BFCP exhibited a higher flexural and tensile strength compared to pure epoxy samples. Meanwhile, the RC beams strengthened using BFCP exhibited an increment of 10-12% in beam structural capacity compared to the un-strengthened beams. Bonding of BFCP in the flexure zone was able to divert the vertical cracks into diagonal at the edge of the composite plate. Findings from this work may serve as a useful guide to strengthen RC beams using a BFCP.


Sign in / Sign up

Export Citation Format

Share Document