Effect of Water Absorption Behaviour on Tensile Properties of Hybrid Jute-Roselle Woven Fibre Reinforced Polyester Composites

Author(s):  
Agung Efriyo Hadi ◽  
Tezara Cionita ◽  
Deni Fajar Fitriyana ◽  
Januar Parlaungan Siregar ◽  
Ahmed Nurye Oumer ◽  
...  

Incorporating natural fibre as reinforcement in the polymer matrix has shown a negative effect since the natural fibre is hydrophilic. The natural fibre easily absorbs water which causes an effect on the mechanical properties of the composites. The objective of this paper is to investigate the water absorption behaviour of hybrid jute-roselle woven fibre reinforced unsaturated polyester composite and the effect of water absorption in terms of tensile strength and tensile modulus. The effect of hybrid composite on the thickness swelling will be tested. The fabrication method used in this study is the hand lay-up technique to fabricate 2-layer and 3-layer composites with layering sequences of woven jute (J)/roselle (Ro) fibre. The results of the study showed that pure roselle fibres for 2 and 3-layer composites have the highest water absorption behaviour 3.86% and 5.51%, respectively, in 28 days) as well as thickness swelling effect, whereas hybrid J-Ro and J-J-Ro composites showed the least water absorption (2.65% and 3.76%, respectively) in 28 days) in both the tests. The hybridisation between jute and roselle fibres reduced water absorption behaviour and improved the fibres dimensional stability. The entire composites showed a decreasing trend for both tensile strength and tensile modulus strength after five weeks of water immersion. Jute fibre composite hybridised with roselle fibre can be used to reduce the total reduction of both tensile strength and tensile modulus throughout the whole immersion period. Moreover, the tensile testing showed that jute fibre composite hybridised with roselle fibre have produced the strongest composite with the highest tensile and modulus strength compared to other types of composites. The hybridisation of diverse fibre reinforcements aids in minimising the composite water absorption and thickness swelling, hence reducing the effect of tensile characteristics.

2014 ◽  
Vol 695 ◽  
pp. 159-162 ◽  
Author(s):  
Januar Parlaungan Siregar ◽  
Tezara Cionita ◽  
Dandi Bachtiar ◽  
Mohd Ruzaimi Mat Rejab

In recent years natural fibres such as sisal, jute, kenaf, pineapple leaf and banana fibres appear to be the outstanding materials which come as the viable and abundant substitute for the expensive and non-renewable synthethic fibre. This paper investigate the effect of fibre length and fibre content on the tensile properties of pineapple leaf fibre (PALF) reinforced unsaturated polyester (UP) composites. PALF as reinforcement agent will be employed with UP to form composite material specimens. The various of fiber length (<0.5, 0.5–1, and 1-2 mm) and fibre content (0, 5, 10 and 15 % by volume) in UP composite have been studied. The fabrication of PALF/UP composites used hand lay-up process, and the specimens for tensile test prepared follow the ASTM D3039. The result obtained from this study show that the 1-2 mm fibre length has higher tensile strength (42 MPa) and tensile modulus (1344 MPa) values compared to fibre length of <0.5 mm (30 MPa and 981 MPa) and 0.5-1 mm (35.40 MPa and 1020 MPa) respectively. Meanwhile, for the effect of various fibre content in study has shown that the increase of fibre content has decreased in tensile strength dan tensile modulus of composites. The increase of fibre content due to poor interfacial bonding and poor wetting of the fibre by unsaturated polyster. The treatment of natural fibre are suggested in order to improve the interfacial adhesion between natural fibre and the unsaturated polyester.


2015 ◽  
Vol 1134 ◽  
pp. 34-38 ◽  
Author(s):  
Nurul Atiqah Mohd Ayob ◽  
Mansur Ahmad ◽  
Nurul Nadia Mohd Khairuddin

In this paper, three type of natural-fibre reinforced polyethylene were produced. They are the coconut coir reinforced polyethylene (RPCC), kenaf reinforced polyethylene (RPKC) and bamboo reinforced polyethylene (RPBC). Water absorption test, thickness swelling test and tensile test of the different natural fibre composites were carried-out. The mass of HDPE and natural fibre were based on percentage of filler loading. Each board types were produced with two fibre ratios which are at fourty percent and thirty percent. The preparation of the test sample is according to ASTM D1037 and ASTM D638. The tensile modulus of elasticity, tensile stress, water absorption and thickness swelling of kenaf and bamboo reinforced polyethylene composites were found to increase with increasing fibre weight fraction. Kenaf and bamboo composites showed compatible result for tensile stress and tensile modulus of elasticity while coconut coir appears to be otherwise. However, coconut coir fibre composites displayed comparable results to kenaf and bamboo for both water and thickness swelling. There were significant differences in both tensile properties and the percentage of the water absorption among composites.


Kenaf fibres have acquired enormous attention in recent years, owing to their economic viability and environmental acceptability. Kenaf (natural) fibres have been started to replace the glass fibre (synthetic) in mechanical, electrical applications and have been utilized in several applications of industrial engineering. The current study deals with water absorption of kenaf/glass fibre reinforced unsaturated polyester composite materials used in high voltage polymeric insulator rods. The kenaf/glass hybrid composites were based on 20%, 30% and 40%(by volume) of kenaf fibers replacement glass fibres with modified 60 vol.% unsaturated polyester resins. The composites were immersedin distilled water at room temperature, and composites resistance to water absorption in terms of the rate of water absorption was determined.A considerable difference in the properties of water absorption of the hybrid composite was found demonstrating that the water absorption effect on the characteristics of insulator rods depends on the arrangement and volume fraction of kenaf fibre of the composite used. Based on the results obtained, a slight effect of water absorption on pure glass fibre composite (control) was observed. The addition of kenaf fibre on glass fibre composite rod increased the water absorption of the composite. It was shown that glass fibres surrounding kena ffibre reduced water absorption. Despite the fact that 40 vol.% of kenaf fibre composite had the highest natural fibre content, it showed the lowest water absorption because of its arrangement on all composite diameters, and also because of being surrounded by glass fibres. All of the materials reached equilibrium and ceased to absorb water after 300 hours


2021 ◽  
Vol 12 (2) ◽  
pp. 297-304
Author(s):  
Andi Idhil Ismail ◽  
◽  
Rasidah Rasidah ◽  
Ridhwan Haliq

The amount of rubber seed waste in Indonesia is highly yielded as a side product from a large amount of rubber trees plantation. The rubber seed was not processed become the usefull application yet, thus it becomes a high volume of waste in each year. An initiative should be done to turn it as a practical material. The rubber seed is potential for natural composite along with the increasing attention toward natural composite application.This work aims to produce natural fibre composite based on rubber seed and characterize it's mechanical properties. In this work, the rubber seed natural composite produced by using the hand lay-up method. Polyester resin YUCALAC BQTN-157 was used as the matrix with the addition of 1% MEKP (Methyl-Ethyl-Ketone- Peroxide) as the catalyst. Mechanical properties of the composite were examined by using a tensile and bending test. Additionally, the water absorption test was performed according to the ASTM D 570. The result showed that the tensile and bending strength decrease with increasing the filler composition, which is added in the composite. The composite, which has the filler composition of 40% was generate the highest tensile strength. In contrast, the lowest tensile strength appeared at the composite with a filler of 60%. The bending strength trend also behaves similarly with the tensile strength as the filler composition increased. Water absorption ability of composites displays the acceptable value as it shows within the range of 2.22-2.96%.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1261
Author(s):  
Catarina S. P. Borges ◽  
Alireza Akhavan-Safar ◽  
Eduardo A. S. Marques ◽  
Ricardo J. C. Carbas ◽  
Christoph Ueffing ◽  
...  

Short fiber reinforced polymers are widely used in the construction of electronic housings, where they are often exposed to harsh environmental conditions. The main purpose of this work is the in-depth study and characterization of the water uptake behavior of PBT-GF30 (polybutylene terephthalate with 30% of short glass fiber)as well as its consequent effect on the mechanical properties of the material. Further analysis was conducted to determine at which temperature range PBT-GF30 starts experiencing chemical changes. The influence of testing procedures and conditions on the evaluation of these effects was analyzed, also drawing comparisons with previous studies. The water absorption behavior was studied through gravimetric tests at 35, 70, and 130 °C. Fiber-free PBT was also studied at 35 °C for comparison purposes. The effect of water and temperature on the mechanical properties was analyzed through bulk tensile tests. The material was tested for the three temperatures in the as-supplied state (without drying or aging). Afterwards, PBT-GF30 was tested at room temperature following water immersion at the three temperatures. Chemical changes in the material were also analyzed through Fourier-transform infrared spectroscopy (FTIR). It was concluded that the water diffusion behavior is Fickian and that PBT absorbs more water than PBT-GF30 but at a slightly higher rate. However, temperature was found to have a more significant influence on the rate of water diffusion of PBT-GF30 than fiber content did. Temperature has a significant influence on the mechanical properties of the material. Humidity contributes to a slight drop in stiffness and strength, not showing a clear dependence on water uptake. This decrease in mechanical properties occurs due to the relaxation of the polymeric chain promoted by water ingress. Between 80 and 85 °C, after water immersion, the FTIR profile of the material changes, which suggests chemical changes in the PBT. The water absorption was simulated through heat transfer analogy with good results. From the developed numerical simulation, the minimum plate size to maintain the water ingress unidirectional was 30 mm, which was validated experimentally.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sekar Sanjeevi ◽  
Vigneshwaran Shanmugam ◽  
Suresh Kumar ◽  
Velmurugan Ganesan ◽  
Gabriel Sas ◽  
...  

AbstractThis investigation is carried out to understand the effects of water absorption on the mechanical properties of hybrid phenol formaldehyde (PF) composite fabricated with Areca Fine Fibres (AFFs) and Calotropis Gigantea Fibre (CGF). Hybrid CGF/AFF/PF composites were manufactured using the hand layup technique at varying weight percentages of fibre reinforcement (25, 35 and 45%). Hybrid composite having 35 wt.% showed better mechanical properties (tensile strength ca. 59 MPa, flexural strength ca. 73 MPa and impact strength 1.43 kJ/m2) under wet and dry conditions as compared to the other hybrid composites. In general, the inclusion of the fibres enhanced the mechanical properties of neat PF. Increase in the fibre content increased the water absorption, however, after 120 h of immersion, all the composites attained an equilibrium state.


2018 ◽  
Vol 42 (2) ◽  
pp. 186-194 ◽  
Author(s):  
Evelyn Hoffmamm Martins ◽  
Alan Pereira Vilela ◽  
Rafael Farinassi Mendes ◽  
Lourival Marin Mendes ◽  
Lívia Elisabeth Vasconcellos de Siqueira Brandão Vaz ◽  
...  

ABSTRACT Brazil is the second largest soybean producer in the world, with a yield of around 96.2 million tons per crop. This high yield leads to a great amount of waste resulting from soybean cultivation, which can reach approximately 41 million tons of waste per year. This material has lignocellulosic properties, which may enable its use as a raw material for particleboard production. Therefore, the objective of this study was to evaluate the use of soybean pods in particleboard production. For particleboard manufacture, wood of the hybrid Eucalyptus urophylla and Eucalyptus grandis was used, added with soybean pods, at proportions of 0%, 25%, 50%, 75% and 100%. For particleboard evaluation, a completely randomized design was used, with five treatments and three replicates, using linear regression and the Scott-Knott test at 5% significance for comparison among the different treatments. The properties apparent density, compaction ratio, water absorption after 2 and 24 hours, thickness swelling after 2 and 24 hours in water immersion, internal bonding, modulus of rupture and modulus of elasticity in bending properties were evaluated. The ratio soybean pod waste and eucalyptus particles in the panels led to an increase in water absorption values and thickness swelling, in addition to a decrease in mechanical properties. The production of panels with approximately 23% soybean pods is feasible.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
J. Sahari ◽  
M. A. Maleque

The mechanical properties of oil palm shell (OPS) composites were investigated with different volume fraction of OPS such as 0%, 10%, 20%, and 30% using unsaturated polyester (UPE) as a matrix. The results presented that the tensile strength and tensile modulus of the UPE/OPS composites increased as the OPS loading increased. The highest tensile modulus of UPE/OPS was obtained at 30 vol% of OPS with the value of 8.50 GPa. The tensile strength of the composites was 1.15, 1.17, and 1.18 times higher than the pure UPE matrix for 10, 20, and 30 vol% of OPS, respectively. The FTIR spectra showed the change of functional group of composites with different volume fractions of OPS. SEM analysis shows the filler pull-out present in the composites which proved the poor filler-matrix interfacial bonding.


2011 ◽  
Vol 194-196 ◽  
pp. 1740-1744 ◽  
Author(s):  
Qiu Hong Wang ◽  
Gu Huang

Flax fabric was woven and composites were produced by using the VARI technique with flax fabric as the reinforcement and unsaturated polyester as the matrix. Laminates with two, three and four layers were fabricated respectively. After saturated in the water for different durations of time (7, 14, 21 and 30 days), the tensile strength of the composites was tested. After being soaked in the water for 7, 14 and 21 days, the tensile strength of the two-layer composites was decreased. For the three and four layers specimens, the tensile strength was increased initially with water treatment for 7 and 14 days,and decreased for 21 and 30 days. Scanning electron microscopy (SEM) confirmed that it might be contributed to the thickness of the two-layer composites. The thinner specimen is easier to be damaged by the penetrated moisture owing to the delamination between the fiber and the matrix after water immersion. For the three and four layers specimens, their contradictory tensile strength suggests that the thicker specimen can delay the moisture permeation and is of better water durability.


Sign in / Sign up

Export Citation Format

Share Document