scholarly journals A Machine Learning Methodology for Classification of Movement Articulation for Robotics

2019 ◽  
Vol 8 (4) ◽  
pp. 12327-12330

Communication one another through target-arranged methodologies have been usually utilized in mechanical technology. Development of an automated arm can include focusing on by means of a forward or backwards kinematics way reach the target. We endeavored to change the assignment of controlling the controlling the motor to an AI approach. Though we have many machine learning approaches we implemented an online automated arm to separate verbalization datasets and have utilized BPNN and ANN methods to foresee multijoint explanation. For improving the accuracy,we created pick and spot assignments dependent on pre-stamped positions and removed preparing datasets which were then utilized for learning. We have utilized classification instead of prediction-correction approach which usually attempted in traditional robotics. This investigation reports noteworthy grouping precision and effectiveness on genuine and engineered datasets created by the gadget. The examination significant classification accuracy and efficiency BPNN and ANN calculations as alternatives for computational concentrated forecast remedy learning plans for articulator development in lab environments.

2019 ◽  
Vol 9 (21) ◽  
pp. 4500 ◽  
Author(s):  
Phung ◽  
Rhee

Research on clouds has an enormous influence on sky sciences and related applications, and cloud classification plays an essential role in it. Much research has been conducted which includes both traditional machine learning approaches and deep learning approaches. Compared with traditional machine learning approaches, deep learning approaches achieved better results. However, most deep learning models need large data to train due to the large number of parameters. Therefore, they cannot get high accuracy in case of small datasets. In this paper, we propose a complete solution for high accuracy of classification of cloud image patches on small datasets. Firstly, we designed a suitable convolutional neural network (CNN) model for small datasets. Secondly, we applied regularization techniques to increase generalization and avoid overfitting of the model. Finally, we introduce a model average ensemble to reduce the variance of prediction and increase the classification accuracy. We experiment the proposed solution on the Singapore whole-sky imaging categories (SWIMCAT) dataset, which demonstrates perfect classification accuracy for most classes and confirms the robustness of the proposed model.


Author(s):  
Mamehgol Yousefi ◽  
Azmin Shakrine ◽  
Samsuzana bt. Abd Aziz ◽  
Syaril Azrad ◽  
Mohamed Mazmira ◽  
...  

Mekatronika ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 1-12
Author(s):  
Muhammad Nur Aiman Shapiee ◽  
Muhammad Ar Rahim Ibrahim ◽  
Muhammad Amirul Abdullah ◽  
Rabiu Muazu Musa ◽  
Noor Azuan Abu Osman ◽  
...  

The skateboarding scene has arrived at new statures, particularly with its first appearance at the now delayed Tokyo Summer Olympic Games. Hence, attributable to the size of the game in such competitive games, progressed creative appraisal approaches have progressively increased due consideration by pertinent partners, particularly with the enthusiasm of a more goal-based assessment. This study purposes for classifying skateboarding tricks, specifically Frontside 180, Kickflip, Ollie, Nollie Front Shove-it, and Pop Shove-it over the integration of image processing, Trasnfer Learning (TL) to feature extraction enhanced with tradisional Machine Learning (ML) classifier. A male skateboarder performed five tricks every sort of trick consistently and the YI Action camera captured the movement by a range of 1.26 m. Then, the image dataset were features built and extricated by means of  three TL models, and afterward in this manner arranged to utilize by k-Nearest Neighbor (k-NN) classifier. The perception via the initial experiments showed, the MobileNet, NASNetMobile, and NASNetLarge coupled with optimized k-NN classifiers attain a classification accuracy (CA) of 95%, 92% and 90%, respectively on the test dataset. Besides, the result evident from the robustness evaluation showed the MobileNet+k-NN pipeline is more robust as it could provide a decent average CA than other pipelines. It would be demonstrated that the suggested study could characterize the skateboard tricks sufficiently and could, over the long haul, uphold judges decided for giving progressively objective-based decision.


2018 ◽  
Vol 25 (11) ◽  
pp. 1481-1487 ◽  
Author(s):  
Vivek Kumar Singh ◽  
Utkarsh Shrivastava ◽  
Lina Bouayad ◽  
Balaji Padmanabhan ◽  
Anna Ialynytchev ◽  
...  

Abstract Objective Develop an approach, One-class-at-a-time, for triaging psychiatric patients using machine learning on textual patient records. Our approach aims to automate the triaging process and reduce expert effort while providing high classification reliability. Materials and Methods The One-class-at-a-time approach is a multistage cascading classification technique that achieves higher triage classification accuracy compared to traditional multiclass classifiers through 1) classifying one class at a time (or stage), and 2) identification and application of the highest accuracy classifier at each stage. The approach was evaluated using a unique dataset of 433 psychiatric patient records with a triage class label provided by “I2B2 challenge,” a recent competition in the medical informatics community. Results The One-class-at-a-time cascading classifier outperformed state-of-the-art classification techniques with overall classification accuracy of 77% among 4 classes, exceeding accuracies of existing multiclass classifiers. The approach also enabled highly accurate classification of individual classes—the severe and mild with 85% accuracy, moderate with 64% accuracy, and absent with 60% accuracy. Discussion The triaging of psychiatric cases is a challenging problem due to the lack of clear guidelines and protocols. Our work presents a machine learning approach using psychiatric records for triaging patients based on their severity condition. Conclusion The One-class-at-a-time cascading classifier can be used as a decision aid to reduce triaging effort of physicians and nurses, while providing a unique opportunity to involve experts at each stage to reduce false positive and further improve the system’s accuracy.


2014 ◽  
Vol 622 ◽  
pp. 75-80
Author(s):  
Baskar Nisha ◽  
B. Madasamy ◽  
J.Jebamalar Tamilselvi

Classification of data on genetic disease is a useful application in microarray analysis. The genetic disease data analysis has the potential for discovering the diseased genes which may be the signature of certain diseases. Machine learning methodologies and data mining techniques are used to predict genetic disease associations of bio informatics data. Among numerous existing methods for gene selection, Backpropagation algorithm has become one of the leading methods and it gives less classification accuracy. It aims to develop a new classification algorithm (Enhanced Backpropagation Algorithm) for genetic disease analysis. Knowledge derived by the Enhanced Backpropagation Algorithm has high classification accuracy with the ability to identify the most significant genes.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Dennie te Molder ◽  
Wasin Poncheewin ◽  
Peter J. Schaap ◽  
Jasper J. Koehorst

Abstract Background The genus Xanthomonas has long been considered to consist predominantly of plant pathogens, but over the last decade there has been an increasing number of reports on non-pathogenic and endophytic members. As Xanthomonas species are prevalent pathogens on a wide variety of important crops around the world, there is a need to distinguish between these plant-associated phenotypes. To date a large number of Xanthomonas genomes have been sequenced, which enables the application of machine learning (ML) approaches on the genome content to predict this phenotype. Until now such approaches to the pathogenomics of Xanthomonas strains have been hampered by the fragmentation of information regarding pathogenicity of individual strains over many studies. Unification of this information into a single resource was therefore considered to be an essential step. Results Mining of 39 papers considering both plant-associated phenotypes, allowed for a phenotypic classification of 578 Xanthomonas strains. For 65 plant-pathogenic and 53 non-pathogenic strains the corresponding genomes were available and de novo annotated for the presence of Pfam protein domains used as features to train and compare three ML classification algorithms; CART, Lasso and Random Forest. Conclusion The literature resource in combination with recursive feature extraction used in the ML classification algorithms provided further insights into the virulence enabling factors, but also highlighted domains linked to traits not present in pathogenic strains.


2020 ◽  
pp. 1-2
Author(s):  
Zhang- sensen

mild cognitive impairment (MCI) is a condition between healthy elderly people and alzheimer's disease (AD). At present, brain network analysis based on machine learning methods can help diagnose MCI. In this paper, the brain network is divided into several subnets based on the shortest path,and the feature vectors of each subnet are extracted and classified. In order to make full use of subnet information, this paper adopts integrated classification model for classification.Each base classification model can predict the classification of a subnet,and the classification results of all subnets are calculated as the classification results of brain network.In order to verify the effectiveness of this method,a brain network of 66 people was constructed and a comparative experiment was carried out.The experimental results show that the classification accuracy of the integrated classification model proposed in this paper is 19% higher than that of SVM,which effectively improves the classification accuracy


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6491
Author(s):  
Le Zhang ◽  
Jeyan Thiyagalingam ◽  
Anke Xue ◽  
Shuwen Xu

Classification of clutter, especially in the context of shore based radars, plays a crucial role in several applications. However, the task of distinguishing and classifying the sea clutter from land clutter has been historically performed using clutter models and/or coastal maps. In this paper, we propose two machine learning, particularly neural network, based approaches for sea-land clutter separation, namely the regularized randomized neural network (RRNN) and the kernel ridge regression neural network (KRR). We use a number of features, such as energy variation, discrete signal amplitude change frequency, autocorrelation performance, and other statistical characteristics of the respective clutter distributions, to improve the performance of the classification. Our evaluation based on a unique mixed dataset, which is comprised of partially synthetic clutter data for land and real clutter data from sea, offers improved classification accuracy. More specifically, the RRNN and KRR methods offer 98.50% and 98.75% accuracy, outperforming the conventional support vector machine and extreme learning based solutions.


Sign in / Sign up

Export Citation Format

Share Document