scholarly journals An Analytical Approach in Calculation of the inductance of Single-Phase Asynchronous Motors.

Author(s):  
Rusdy Hartungi ◽  
Luis Gomez- Agustina ◽  
Zhihui Ye

In optimizing design of the iron core, it is essential to know the magnetic field of the coil outside the core to get the leakage inductance, because the leakage inductance in this area usually provides high contribution to the flux density in the iron core. In this paper, an analytical solution as an alternative to three-dimensional FEM (finite element method) to calculate the field outside the iron core by solving analytical equation using MathCAD is presented. The analytical method provides results that are close to result given by three-dimensional FEM, but with the great advantage of dramatically reduced computing time.

2020 ◽  
Vol 496 (2) ◽  
pp. 2039-2084 ◽  
Author(s):  
G Stockinger ◽  
H-T Janka ◽  
D Kresse ◽  
T Melson ◽  
T Ertl ◽  
...  

ABSTRACT We present 3D full-sphere supernova simulations of non-rotating low-mass (∼9 M⊙) progenitors, covering the entire evolution from core collapse through bounce and shock revival, through shock breakout from the stellar surface, until fallback is completed several days later. We obtain low-energy explosions (∼0.5–1.0 × 1050 erg) of iron-core progenitors at the low-mass end of the core-collapse supernova (LMCCSN) domain and compare to a super-AGB (sAGB) progenitor with an oxygen–neon–magnesium core that collapses and explodes as electron-capture supernova (ECSN). The onset of the explosion in the LMCCSN models is modelled self-consistently using the vertex-prometheus code, whereas the ECSN explosion is modelled using parametric neutrino transport in the prometheus-HOTB code, choosing different explosion energies in the range of previous self-consistent models. The sAGB and LMCCSN progenitors that share structural similarities have almost spherical explosions with little metal mixing into the hydrogen envelope. A LMCCSN with less second dredge-up results in a highly asymmetric explosion. It shows efficient mixing and dramatic shock deceleration in the extended hydrogen envelope. Both properties allow fast nickel plumes to catch up with the shock, leading to extreme shock deformation and aspherical shock breakout. Fallback masses of $\mathord {\lesssim }\, 5\, \mathord {\times }\, 10^{-3}$ M⊙ have no significant effects on the neutron star (NS) masses and kicks. The anisotropic fallback carries considerable angular momentum, however, and determines the spin of the newly born NS. The LMCCSN model with less second dredge-up results in a hydrodynamic and neutrino-induced NS kick of >40 km s−1 and a NS spin period of ∼30 ms, both not largely different from those of the Crab pulsar at birth.


Author(s):  
Jacek Horiszny

Purpose The paper presents the analysis of magnetic field that surrounds the power transformer after it has been switched off. The purpose of this paper is to determine the possibility of defining the residual fluxes in the legs of the transformer based on the measurement of this field. It was also intended to determine the type and the location of magnetic sensors. Design/methodology/approach Numerical analysis of the magnetic field was performed. A three-dimensional model of the transformer’s magnetic core was created in the Flux 3D simulation program. The analysis was concerned with an oil-filled transformer and a dry transformer. The magnetic field of Earth was taken into account. Findings The research has shown that magnetic induction of the leakage field produced by residual magnetization of the core is comparable to the magnetic induction of the Earth’s field. It was also found that the measurement of the magnetic induction should be performed as close as possible to the core. The interior of the tank turned out to be a convenient space for the placement of the sensors. Research limitations/implications The influence of external ferromagnetic objects, and devices generating magnetic field, on the measurement was not considered. It should be taken into account in the future work. Originality/value On the basis of the analysis, it was proposed to measure the magnetic induction vector of the leakage field at three points. The sensors should be placed in front of the columns at a position that is half of their height. The measurement can be performed with satisfactory accuracy by sensors located on the surface of the windings.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3166
Author(s):  
Krzysztof Makowski ◽  
Aleksander Leicht

This paper deals with the computation of the performance characteristics of the single-phase self-excited induction generator by field–circuit method. It presents and compares previously unpublished results—self-excitation and no-load characteristics of the generator for different rotor speeds, and complete load steady-state performance characteristics for various types of the core materials. The discrepancies between the performance characteristics of the generator for the catalog’s magnetization curves of different types of electrical sheets and for an actual magnetic core of the generator for self-excitation transients and load steady-state are presented. The results may be useful for designing new constructions of single-phase self-excited induction generators.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 164
Author(s):  
Jianwei Shao ◽  
Cuidong Xu ◽  
Ka Wai Eric Cheng

The rail transit system is a large electric vehicle system that is strongly dependent on the energy technologies of the power system. The use of new energy-saving amorphous alloy transformers can not only reduce the loss of rail transit power, but also help alleviate the power shortage situation and electromagnetic emissions. The application of the transformer in the field of rail transit is limited by the problem that amorphous alloy is prone to debris. this paper studied the stress conditions of amorphous alloy transformer cores under different working conditions and determined that the location where the core is prone to fragmentation, which is the key problem of smoothly integrating amorphous alloy distribution transformers on rail transit power supply systems. In this study, we investigate the changes in the electromagnetic field and stress of the amorphous alloy transformer core under different operating conditions. The finite element model of an amorphous alloy transformer is established and verified. The simulation results of the magnetic field and stress of the core under different working conditions are given. The no-load current and no-load loss are simulated and compared with the actual experimental data to verify practicability of amorphous alloy transformers. The biggest influence on the iron core is the overload state and the maximum value is higher than the core stress during short circuit. The core strain caused by the side-phase short circuit is larger than the middle-phase short circuit.


1967 ◽  
Vol 89 (4) ◽  
pp. 577-586 ◽  
Author(s):  
P. Cooper

A model is developed for analytically determining pump inducer performance in both the single-phase and cavitating flow regimes. An equation of state for vaporizing flow is used in an approximate, three-dimensional analysis of the flow field. The method accounts for losses and yields internal distributions of fluid pressure, velocity, and density together with the resulting overall efficiency and pressure rise. The results of calculated performance of two sample inducers are presented. Comparison with recent theory for fluid thermal effects on suction head requirements is made with the aid of a resulting dimensionless vaporization parameter.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Yoon Jo Kim ◽  
Yogendra K. Joshi ◽  
Andrei G. Fedorov ◽  
Young-Joon Lee ◽  
Sung-Kyu Lim

It is now widely recognized that the three-dimensional (3D) system integration is a key enabling technology to achieve the performance needs of future microprocessor integrated circuits (ICs). To provide modular thermal management in 3D-stacked ICs, the interlayer microfluidic cooling scheme is adopted and analyzed in this study focusing on a single cooling layer performance. The effects of cooling mode (single-phase versus phase-change) and stack/layer geometry on thermal management performance are quantitatively analyzed, and implications on the through-silicon-via scaling and electrical interconnect congestion are discussed. Also, the thermal and hydraulic performance of several two-phase refrigerants is discussed in comparison with single-phase cooling. The results show that the large internal pressure and the pumping pressure drop are significant limiting factors, along with significant mass flow rate maldistribution due to the presence of hot-spots. Nevertheless, two-phase cooling using R123 and R245ca refrigerants yields superior performance to single-phase cooling for the hot-spot fluxes approaching ∼300 W/cm2. In general, a hybrid cooling scheme with a dedicated approach to the hot-spot thermal management should greatly improve the two-phase cooling system performance and reliability by enabling a cooling-load-matched thermal design and by suppressing the mass flow rate maldistribution within the cooling layer.


1988 ◽  
Vol 16 (6) ◽  
pp. 949-953 ◽  
Author(s):  
JOHN P. PRIESTLE ◽  
HANS-PETER SCHÄR ◽  
MARKUS G. GRÜTTER

Summary The three-dimensional structure of human recombinant interleukin-1β has been determined at 0.24 nm resolution by X-ray crystallographic techniques. The partially refined model has a crystallographic R-factor of just under 19%. The structure is composed of 12 β-strands forming a complex network of hydrogen bonds. The core of the structure can best be described as a tetrahedron whose edges are each formed by two antiparallel β-strands. The interior of this structure is filled with hydrophobic side-chains. There is a 3-fold repeat in the folding of the polypeptide chain. Although this folding pattern suggests gene triplication, no significant internal sequence homology between topologically corresponding residues exists. The folding topology of interleukin-1β is very similar to that described by A. D. McLachlan [(1979) J. Mol. Biol. 133, 557–563] for soybean trypsin inhibitor.


Sign in / Sign up

Export Citation Format

Share Document