scholarly journals Adsorption Isotherms studies of the removal of Indigo Blue dye from aqueous solution using chemically modified coconut shell

Author(s):  
Olaniyi K Yusuff ◽  
Adenike M. O Abdulraheem ◽  
Omowumi D. Agboola

Introduction: The conversion and utilization of agricultural wastes in environmentally friendly processes have transformed these materials into useful rather than waste materials. Aim: This study investigates the adsorption of indigo blue dye from aqueous solution onto coconut shell, a low cost agricultural waste material in a batch process. Materials and Methods: Pulverized coconut shell was chemically modified and characterized using the Fourier Transform Infra Red spectroscopy and Scanning Electron Microscopy. Adsorption process using the chemically modified coconut shell was studied as a function of pH, initial dye concentration, adsorbent dose, and contact time. The adsorption equilibrium data were analyzed with Langmuir, Freundlich and Temkin isotherm models. Results: The results revealed that percentage of the indigo dye adsorbed from aqueous solution varied linearly with the adsorbent dose, concentration and time with maximum percentage dye adsorption of 88.4% at 70 mg dosage, 95.8% at 0.05 mg/L concentration and 90% at 1 hr contact time but varies non-linearly with pH with maximum percentage dye adsorption of 92.9% attained at pH of 5. The adsorption equilibrium data were analyzed with Langmuir, Freundlich and Temkin isotherm models with the Langmuir isotherm having the best fit to the adsorption process with R2 value of 0.998. The experimental data were best described by the pseudo-second order kinetics model. FTIR analyses reveal that the adsorption process was through a chemical interaction of the dye with some functional groups at the surface of the adsorbent Conclusion: The chemically modified coconut shell is an effective adsorbent for the removal of indigo dye from aqueous solution is by chemisorption process with the adsorbent surface energetically homogeneous (n < 1). Keywords: Adsorption, Indigo blue dye, Coconut Shell, Kinetics, Aqueous solution.

2013 ◽  
Vol 3 (2) ◽  
pp. 119-127 ◽  
Author(s):  
Papita Das Saha ◽  
Jaya Srivastava ◽  
Shamik Chowdhury

The efficacy of seashells as a new adsorbent for removal of phenol from aqueous solutions was studied by performing batch equilibrium tests under different operating parameters such as solution pH, adsorbent dose, initial phenol concentration, and temperature. The phenol removal efficiency remained unaffected when the initial pH of the phenol solution was in the range of 3–8. The amount of phenol adsorbed increased with increasing initial phenol concentration while it decreased with increasing temperature. The adsorption equilibrium data showed excellent fit to the Langmuir isotherm model with maximum monolayer adsorption capacity of 175.27 mg g−1 at pH 4.0, initial phenol concentration = 50 mg L−1, adsorbent dose = 2 g and temperature = 293 K. Analysis of kinetic data showed that the adsorption process followed pseudo-second-order kinetics. Activation energy of the adsorption process, calculated using the Arrhenius equation, was found to be 51.38 kJ mol−1, suggesting that adsorption of phenol onto seashells involved chemical ion-exchange. The numerical value of the thermodynamic parameters (ΔG0, ΔH0 and ΔS0) indicated that adsorption of phenol onto seashells was feasible, spontaneous and endothermic under the examined conditions. The study shows that seashells can be used as an economic adsorbent for removal of phenol from aqueous solution.


2018 ◽  
Vol 54 (1) ◽  
pp. 57-69 ◽  
Author(s):  
Shaheriar Haque ◽  
Sekhar Gain ◽  
Kaushik Gupta ◽  
Uday Chand Ghosh

Abstract Graphene oxide (GO) fabricated iron-aluminium oxide (GO@IAO) nanocomposite was synthesized with one-spot chemical reaction from emulsification of GO (1.0 g) in 0.2 L of 1.0 M mixed metal solution, which was characterized with some of the latest analytical tools aiming to assess methylene blue (MB) adsorption performance from aqueous solutions. Adsorption of MB on GO@IAO surfaces shows a steep increase from pH 3.0 to 5.0, but steepness declines at pH &gt;5.0. The closeness of fitted kinetic data with the pseudo-second order (PSO) equation (R2 = 0.9845) compared to the pseudo-first order equation (R2 = 0.9527) confirms the adsorption process is of the PSO type. The MB adsorption equilibrium data can be described better by the Langmuir isotherm (R2 = 0.99) than the Freundlich isotherm (R2 = 0.96–0.97), inclining to the monolayer adsorption process. The Langmuir adsorption capacity of GO@IAO has been estimated to be 330.35 mg/g at 303 K. The MB adsorption is established to be spontaneous (–ΔG0 = 26.31–26.61 kJ/mol) owing to favourable enthalpy and entropy changes (ΔH0 = –23.38 kJ/mol; ΔS0= 0.01 kJ/mol/K). Both absolute and aqueous (1/1, v/v) alcohols regenerate the MB adsorbed GO@IAO up to 80–85%, indicating recyclability of composite.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1764 ◽  
Author(s):  
Amir Muhammad ◽  
Anwar-ul-Haq Ali Shah ◽  
Salma Bilal ◽  
Gul Rahman

Owing to its exciting physicochemical properties and doping–dedoping chemistry, polyaniline (PANI) has emerged as a potential adsorbent for removal of dyes and heavy metals from aqueous solution. Herein, we report on the synthesis of PANI composites with magnetic oxide (Fe3O4) for efficient removal of Basic Blue 3 (BB3) dye from aqueous solution. PANI, Fe3O4, and their composites were characterized with several techniques and subsequently applied for adsorption of BB3. Effect of contact time, initial concentration of dye, pH, and ionic strength on adsorption behavior were systematically investigated. The data obtained were fitted into Langmuir, Frundlich, Dubbanin-Rudiskavich (D-R), and Tempkin adsorption isotherm models for evaluation of adsorption parameters. Langmuir isotherm fits closely to the adsorption data with R2 values of 0.9788, 0.9849, and 0.9985 for Fe3O4, PANI, and PANI/Fe3O4 composites, respectively. The maximum amount of dye adsorbed was 7.474, 47.977, and 78.13 mg/g for Fe3O4, PANI, and PANI/Fe3O4 composites, respectively. The enhanced adsorption capability of the composites is attributed to increase in surface area and pore volume of the hybrid materials. The adsorption followed pseudo second order kinetics with R2 values of 0.873, 0.979, and 0.999 for Fe3O4, PANI, and PANI/Fe3O4 composites, respectively. The activation energy, enthalpy, Gibbs free energy changes, and entropy changes were found to be 11.14, −32.84, −04.05, and −0.095 kJ/mol for Fe3O4, 11.97, −62.93, −07.78, and −0.18 kJ/mol for PANI and 09.94, −74.26, −10.63, and −0.210 kJ/mol for PANI/Fe3O4 respectively, which indicate the spontaneous and exothermic nature of the adsorption process.


2017 ◽  
Vol 76 (10) ◽  
pp. 2776-2784 ◽  
Author(s):  
Deniz Akın Şahbaz ◽  
Caglayan Acikgoz

Abstract Cross-linked chitosan(C)/marble powder (M) composites with different weight ratio percentage (C100M0, C70M30, C50M50, and C30M70) were prepared from marble powder and chitosan and cross-linked using glutaraldehyde. The morphology and the surface area of the chitosan/marble powder composites were also characterized with a scanning electron microscope (SEM) and Micromeritics (ASAP 2020) BET (Brunauer, Emmett and Teller) instrument, respectively. To evaluate the adsorption behaviour of the chitosan/marble powder composites, 0.1 g adsorbent was added into 50 mL Diamozol Blue BRF %150 (C.I. Reactive Blue 221) solution with fixed concentrations (60 mg/L). At equilibrium, the adsorption capacity of C100M0, C70M30 and C50M50 for Dimozol Blue was about 27 mg/g and significantly greater than that of C30M70. C50M50 composite was more economical than C100M0 and C70M30 due to the higher marble powder content, and hence was selected as an adsorbent for the removal of Dimozol Blue from aqueous solution. The adsorption kinetics and equilibrium isotherms of Dimozol Blue onto the chitosan/marble powder composites from aqueous solution were investigated. The studies revealed that Dimozol Blue dye adsorption was described well by the pseudo-second-order and Freundlich isotherm models. The results of this study indicated the applicability of the chitosan/marble powder composites for removing industrial dyes from aqueous solution.


2018 ◽  
Vol 4 (3) ◽  
pp. 297-302
Author(s):  
S. Jayashree ◽  
Jeyavathana Samuel ◽  
R. Vashantha

The main objective of this study was to investigate the removal of cadmium(II) ions from aqueous solution using raw Cymbopogon citratus as an adsorbent. It was characterized by FT-IR, XRD, SEM-EDAX and its physical parameters were analyzed. Different factors such as pH, contact time, initial concentration and temperature were studied. Maximum adsorption was taken place at the optimum pH of 6 and the equilibrium data were analyzed by Langmuir, Freundlich and Temkin Isotherm models. Among those isotherm models Langmuir and Temkin were fitted well with good correlation coefficient (R2). The negative values of ΔG⁰ for all temperature shows the adsorption process for cadmium(II) ion was spontaneous in nature and feasible. The negative value of enthalpy change ΔH⁰ shows the adsorption process is exothermic and the positive value of ΔS⁰ indicates the disorderness or randomness process of adsorption. The positive value of Ea indicates the higher solution temperature favors the adsorption of metal ion onto RCC. The experimental data were analyzed by kinetic studies such as pseudo-first order, pseudo-second order and intra-particle diffusion models. Desorption was also studied and the recovery of the adsorbent was found to be 10%. Thus on the basis of these investigations the present study concludes that the raw Cymbopogon citratus (RCC) was found to be highly effective, nontoxic, environmental friendly and low cost adsorbent for the removal of toxic Cd(II) ions from aqueous solution.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Hizkeal Tsade Kara ◽  
Sisay Tadesse Anshebo ◽  
Fedlu Kedir Sabir ◽  
Getachew Adam Workineh

The study was focused on the preparation and characterizations of sodium periodate-modified nanocellulose (NaIO4-NC) prepared from Eichhornia crassipes for the removal of cationic methylene blue (MB) dye from wastewater (WW). A chemical method was used for the preparation of NaIO4-NC. The prepared NaIO4-NC adsorbent was characterized by using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM), energy-dispersive X-ray (EDX), and Brunauer–Emmett–Teller (BET) instruments. Next, it was tested to the adsorption of MB dye from WW using batch experiments. The adsorption process was performed using Langmuir and Freundlich isotherm models with maximum adsorption efficiency (qmax) of 90.91 mg·g−1 and percent color removal of 78.1% at optimum 30 mg·L−1, 60 min., 1 g, and 8 values of initial concentration, contact time, adsorbent dose, and solution pH, respectively. Pseudo-second-order (PSO) kinetic model was well fitted for the adsorption of MB dye through the chemisorption process. The adsorption process was spontaneous and feasible from the thermodynamic study because the Gibbs free energy value was negative. After adsorption, the decreased values for physicochemical parameters of WW were observed in addition to the color removal. From the regeneration study, it is possible to conclude that NaIO4-NC adsorbent was recyclable and reused as MB dye adsorption for 13 successive cycles without significant efficient loss.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Luyen T. Tran ◽  
Hoang V. Tran ◽  
Thu D. Le ◽  
Giang L. Bach ◽  
Lam D. Tran

In this paper, Fe3O4/graphene oxide/chitosan (FGC) nanocomposite was synthesized using coprecipitation method for application to removal of nickel ion (Ni(II)) from aqueous solution by adsorption process. To determine residue Ni(II) ions concentration in aqueous solution after adsorption process, we have used UV-Vis spectrophotometric method, which is an effective and exact method for Ni(II) monitoring at low level by using dimethylglyoxime (DMG) as a complex reagent with Ni(II), which has a specific adsorption peak at the wavelength of 550 nm on UV-Vis spectra. A number of factors that influence Ni(II) ions adsorption capacity of FGC nanocomposite such as contact time, adsorption temperature, and adsorbent dosage were investigated. Results showed that the adsorption equilibrium is established after 70 minutes with the adsorbent dosage of 0.01 g.mL−1 at 30°C (the room temperature). The thermodynamic and kinetic parameters of this adsorption including free enthalpy change (∆G0), enthalpy change (∆H0), entropy change (∆S0), and reaction order with respect to Ni(II) ions were also determined. The Ni(II) ions adsorption equilibrium data are fitted well to the Langmuir isotherm and the maximum monolayer capacity (qmax) is 12.24 mg.g−1. Moreover, the FGC adsorbent can be recovered by an external magnet; in addition, it can be regenerated. The reusability of FGC was tested and results showed that 83.08% of removal efficiency was obtained after 3 cycles. The synthesized FGC nanocomposite with many advantages is a promising material for removal of heavy metal ions from aqueous solution to clean up the environment.


2011 ◽  
Vol 356-360 ◽  
pp. 1581-1585 ◽  
Author(s):  
Yan Li Sun ◽  
Jian Wei Lin ◽  
Hong Huang ◽  
Wei Ying Zhang ◽  
Dan Dan Ma

Abstract. In this study, the simultaneous adsorption characteristics of ammonium and phosphate from aqueous solution by calcium chloride-modified zeolite were investigated. Results showed that the adsorption kinetic data of ammonium and phosphate onto the calcium chloride-modified zeolite could be well described by a pseudo-second-order model. The adsorption equilibrium data of ammonium onto the calcium chloride-modified zeolite fitted to the Langmuir isotherm model better than the Freundlich and Dubinin-Radushkevich isotherm models. The phosphate removal efficiency of calcium chloride-modified zeolite increased with the initial concentration of ammonium in aqueous solution. The ammonium removal efficiency of calcium chloride-modified zeolite increased with increasing solution pH from 7.0 to 9.0, but decreased with increasing solution pH from 9.0 to 10.0. The phosphate removal efficiency of calcium chloride-modified zeolite increased dramatically with increasing solution pH from 7.0 to 9.0, but decreased with increasing solution pH from 9.0 to 10.0. The mechanism for the adsorption of ammonium onto the calcium chloride-modified zeolite was ions exchange, and the mechanism for the removal of phosphate by the calcium chloride-modified zeolite was chemical precipitation.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Gamal Owes El-Sayed ◽  
Talaat Younis Mohammed ◽  
Ashraf Abd-Allah Salama

Sugarcane stalks powder was tested for its efficiency of removing a textile dye Maxilon Red GRL from aqueous solution. Different parameters affecting dye removal efficiency were studied. These parameters include contact time, initial dye concentration, adsorbent dose, ionic strength, pH, and temperature. Langmuir and Freundlich isotherm models were applied to the equilibrium data. The data fitted well with the Langmuir isotherm (). The maximum monolayer adsorption capacity () was found to be 20.96 mg/g at an initial pH of 7.2. The temperature variation study showed that dye adsorption is exothermic and spontaneous with increased randomness at the solid solution interface. The results indicated that sugarcane stalks could be an alternative for more costly adsorbents used for dye removal. The kinetic of the adsorption process followed the pseudo second-order kinetics model.


Author(s):  
Mukhamad Nurhadi ◽  
Iis Intan Widiyowati ◽  
Wirhanuddin Wirhanuddin ◽  
Sheela Chandren

The evaluation of kinetic adsorption process of sulfonated carbon-derived from Eichhornia crassipes in the adsorption of methylene blue dye from aqueous solution has been carried out. The sulfonated carbon-derived from E. crassipes (EGS-600) was prepared by carbonation of E. crassipes powder at 600 °C for 1 h, followed by sulfonation with concentrated sulfuric acid for 3 h. The physical properties of the adsorbents were characterized by using Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and nitrogen adsorption-desorption studies. Adsorption study using methylene blue dye was carried out by varying the contact time and initial dye concentration for investigated kinetics adsorption models. The effect of varying temperature was used to determine the thermodynamic parameter value of ΔG, ΔH, and ΔS. The results showed that the equilibrium adsorption capacity was 98% when EGS-600 is used as an adsorbent. The methylene blue dye adsorption onto adsorbent takes place spontaneity and follows a pseudo-second-order adsorption kinetic model. Copyright © 2019 BCREC Group. All rights reservedReceived: 20th April 2018; Revised: 28th August 2018; Accepted: 4th September 2018; Available online: 25th January 2019; Published regularly: April 2019How to Cite: Nurhadi, M., Widiyowati, I.I., Wirhanuddina, W., Chandren, S. (2019). Kinetic of Adsorption Process of Sulfonated Carbon-derived from Eichhornia crassipes in the Adsorption of Methylene Blue Dye from Aqueous Solution. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1): 17-27 (doi:10.9767/bcrec.14.1.2548.17-27)Permalink/DOI: https://doi.org/10.9767/bcrec.14.1.2548.17-27 


Sign in / Sign up

Export Citation Format

Share Document