scholarly journals Removal of Methylene Blue Dye from Wastewater Using Periodiated Modified Nanocellulose

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Hizkeal Tsade Kara ◽  
Sisay Tadesse Anshebo ◽  
Fedlu Kedir Sabir ◽  
Getachew Adam Workineh

The study was focused on the preparation and characterizations of sodium periodate-modified nanocellulose (NaIO4-NC) prepared from Eichhornia crassipes for the removal of cationic methylene blue (MB) dye from wastewater (WW). A chemical method was used for the preparation of NaIO4-NC. The prepared NaIO4-NC adsorbent was characterized by using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM), energy-dispersive X-ray (EDX), and Brunauer–Emmett–Teller (BET) instruments. Next, it was tested to the adsorption of MB dye from WW using batch experiments. The adsorption process was performed using Langmuir and Freundlich isotherm models with maximum adsorption efficiency (qmax) of 90.91 mg·g−1 and percent color removal of 78.1% at optimum 30 mg·L−1, 60 min., 1 g, and 8 values of initial concentration, contact time, adsorbent dose, and solution pH, respectively. Pseudo-second-order (PSO) kinetic model was well fitted for the adsorption of MB dye through the chemisorption process. The adsorption process was spontaneous and feasible from the thermodynamic study because the Gibbs free energy value was negative. After adsorption, the decreased values for physicochemical parameters of WW were observed in addition to the color removal. From the regeneration study, it is possible to conclude that NaIO4-NC adsorbent was recyclable and reused as MB dye adsorption for 13 successive cycles without significant efficient loss.

2017 ◽  
Vol 76 (10) ◽  
pp. 2776-2784 ◽  
Author(s):  
Deniz Akın Şahbaz ◽  
Caglayan Acikgoz

Abstract Cross-linked chitosan(C)/marble powder (M) composites with different weight ratio percentage (C100M0, C70M30, C50M50, and C30M70) were prepared from marble powder and chitosan and cross-linked using glutaraldehyde. The morphology and the surface area of the chitosan/marble powder composites were also characterized with a scanning electron microscope (SEM) and Micromeritics (ASAP 2020) BET (Brunauer, Emmett and Teller) instrument, respectively. To evaluate the adsorption behaviour of the chitosan/marble powder composites, 0.1 g adsorbent was added into 50 mL Diamozol Blue BRF %150 (C.I. Reactive Blue 221) solution with fixed concentrations (60 mg/L). At equilibrium, the adsorption capacity of C100M0, C70M30 and C50M50 for Dimozol Blue was about 27 mg/g and significantly greater than that of C30M70. C50M50 composite was more economical than C100M0 and C70M30 due to the higher marble powder content, and hence was selected as an adsorbent for the removal of Dimozol Blue from aqueous solution. The adsorption kinetics and equilibrium isotherms of Dimozol Blue onto the chitosan/marble powder composites from aqueous solution were investigated. The studies revealed that Dimozol Blue dye adsorption was described well by the pseudo-second-order and Freundlich isotherm models. The results of this study indicated the applicability of the chitosan/marble powder composites for removing industrial dyes from aqueous solution.


Author(s):  
Khawla Ben Jeddou ◽  
Fatma Bouaziz ◽  
Fadia Ben Taheur ◽  
Oumèma Nouri-Ellouz ◽  
Raoudha Ellouz-Ghorbel ◽  
...  

Abstract Adsorption of direct red 80 (DR 80) and methylene blue (MB) from aqueous solutions on potato peels (PP) has been compared. The use of peels in decontamination technology is very promising given the near zero-cost for the synthesis of those adsorbents. The selected potato peels were first analyzed by scanning using electron microscopy (SEM) and Fourier transforms infra red spectroscopy (FTIR). Then the adsorption behavior was studied in a batch system. The adsorption process is affected by various parameters such as the solution pH (2–11), the initial concentration of the dye (20, 50, 100, 150 and 200 mg L−1), the adsorbent dose (0.1%–3%), the temperature (303.16 K, 313.16 K, and 323.16 K), agitation (up to 250 rpm), as well as the contact time. Adsorption isotherms of the studied dye on the adsorbent were determined and compared with the Langmiur, Freundlich and Temkin adsorption models. The results show that the data was most similar to the Freundlich isotherm (R2 = 0.99). The maximum adsorption capacities (Qmax) of MB and DR 80 by the PP at temperatures 303.16 K, 313.16 K and 323.16 K were found to be approximately 97.08 mg g−1; 45.87 mg g−1; 61.35 mg g−1 and 27.778 mg g−1; 45.45 mg g−1; and 32.258 mg g−1. The kinetic data was compared to the pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. This revealed that adsorption of methylene blue onto PP abided mostly to the pseudo-second-order kinetic model. Calculations of various thermodynamic parameters such as enthalpy change (ΔH), entropy change (ΔS), and free energy change (ΔG) display the endothermic and spontaneous nature of the adsorption process.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Rekha Singh ◽  
Tony S. Singh ◽  
John O. Odiyo ◽  
James A. Smith ◽  
Joshua N. Edokpayi

This paper presents a study on batch sorption of methylene blue dye from aqueous solution onto Ginkgo biloba sorbent, a waste material produced during the Fall season in many parts of the world. Batch kinetics, equilibrium, and thermodynamic studies were conducted to evaluate the effect of contact time (0–150 min), sorbent dose (0.5–3.0 g/L), pH (2–11), temperature (30–50°C), initial MB concentration (10–30 mg/L), and particle size (177 μm—590 μm) on the methylene blue dye sorption. More than 99% removal of methylene blue was observed within 120 minutes. A Lagergren pseudo-first-order model, a pseudo-second-order model, and intraparticle diffusion models fitted well to the kinetics experimental data. Langmuir and Freundlich isotherm models also fitted well with the observed equilibrium data. Additionally, removal of methylene blue increased with increase in solution pH. Higher sorption capacity (∼20 mg/g) was observed with smaller particle size (170 μm) as compared to larger particle sizes (590 μm). Thermodynamic parameters such as ∆G°, ∆H°, and ∆S° indicated that the sorption process was feasible, spontaneous, and endothermic in nature. The study shows that Ginkgo biloba leaves have the potential to be an efficient sorbent for the removal of methylene blue from surface water samples.


Author(s):  
Mukhamad Nurhadi ◽  
Iis Intan Widiyowati ◽  
Wirhanuddin Wirhanuddin ◽  
Sheela Chandren

The evaluation of kinetic adsorption process of sulfonated carbon-derived from Eichhornia crassipes in the adsorption of methylene blue dye from aqueous solution has been carried out. The sulfonated carbon-derived from E. crassipes (EGS-600) was prepared by carbonation of E. crassipes powder at 600 °C for 1 h, followed by sulfonation with concentrated sulfuric acid for 3 h. The physical properties of the adsorbents were characterized by using Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and nitrogen adsorption-desorption studies. Adsorption study using methylene blue dye was carried out by varying the contact time and initial dye concentration for investigated kinetics adsorption models. The effect of varying temperature was used to determine the thermodynamic parameter value of ΔG, ΔH, and ΔS. The results showed that the equilibrium adsorption capacity was 98% when EGS-600 is used as an adsorbent. The methylene blue dye adsorption onto adsorbent takes place spontaneity and follows a pseudo-second-order adsorption kinetic model. Copyright © 2019 BCREC Group. All rights reservedReceived: 20th April 2018; Revised: 28th August 2018; Accepted: 4th September 2018; Available online: 25th January 2019; Published regularly: April 2019How to Cite: Nurhadi, M., Widiyowati, I.I., Wirhanuddina, W., Chandren, S. (2019). Kinetic of Adsorption Process of Sulfonated Carbon-derived from Eichhornia crassipes in the Adsorption of Methylene Blue Dye from Aqueous Solution. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1): 17-27 (doi:10.9767/bcrec.14.1.2548.17-27)Permalink/DOI: https://doi.org/10.9767/bcrec.14.1.2548.17-27 


2021 ◽  
Author(s):  
Amrollah Parsaie ◽  
Nadereh Rahbar ◽  
Mohamadreza Baezat

Abstract A new magnetic adsorbent (Fe3O4/CuO/AC) composed of magnetite (Fe3O4) and copper oxide (CuO) nanoparticles Impregnated with activated carbon (AC) has been fabricated and used for the first time to remove imidacloprid (IMCP) insecticide from the aqueous solutions. This composite was characterized using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction, energy dispersive x-ray diffraction, and vibrating sample magnetometer. The main influential factors such as the solution pH, the adsorbent amount, temperature, agitating time, and initial pesticide concentration were also tested to evaluate the optimized condition. Based on the results obtained from isotherm and kinetic modeling, the adsorption mechanism of IMCP on Fe3O4/CuO/AC is a combination of physisorption and chemisorption phenomena. The experimental data fitted best to the Freundlich isotherm model revealing the presence of heterogeneous sites for IMCP adsorption. Besides, the kinetics results revealed that the adsorption process well fitted with pseudo-second-order model, implying that the chemisorption was determining step in adsorption process. Thermodynamic results showed the spontaneous and exothermic nature of the adsorption process. Under optimal conditions (pH 7; contact time, 10 min; initial pesticide concentration, 10 mg L-1), IMCP removal efficiency was 99.6%, indicating the excellent ability of Fe3O4/CuO/AC nanocomposite for the adsorption of this pesticide from water solutions.


2016 ◽  
Vol 74 (11) ◽  
pp. 2560-2568 ◽  
Author(s):  
Qiulai He ◽  
Hongyu Wang ◽  
Jing Zhang ◽  
Zhuocheng Zou ◽  
Jun Zhou ◽  
...  

The adsorption of methylene blue (MB) by low cost biomass lotus seedpod (LSP) was optimized by a central composite design combined with response surface methodology in aqueous solution. Solution pH, initial dye concentration and adsorbent dosage were studied as independent variables at five levels each, respectively. Analysis of variance suggested the validity of the regression model. LSP was characterized by Fourier transform infrared spectra and energy dispersive spectroscopy. The kinetics revealed that the adsorption behavior followed the pseudo-second-order model. Langmuir and Freundlich isotherm models were used to evaluate the adsorption, and the experimental data were better fitted by the Langmuir isotherm than the Freundlich isotherm. The maximum monolayer adsorption capacity of the LSP was 157.98 mg g−1 at 30 °C for MB adsorption. In addition, 0.2 M HCl solution could be used for reusability of LSP via desorption tests. LSP was proven to be an available and effective biosorbent for MB removal from aqueous solution.


2021 ◽  
Vol 348 ◽  
pp. 01016
Author(s):  
Rajaa Bassam ◽  
Marouane El Alouani ◽  
Nabila Jarmouni ◽  
Jabrane Maissara ◽  
Mohammed El Mahi Chbihi ◽  
...  

Heavy metals are the most dangerous inorganic pollutants Due to their bioaccumulation and their nonbiodegradability, for this, several studies have focused on the recovery of these metals from water using different techniques. In this context, our study consists of evaluating an efficient and eco-friendly pathway of competitive recovery of heavy metals (Cd, Cr and As) from aqueous solutions by adsorption using raw rock. This adsorbent was characterized before and after the adsorption process by several techniques. The multi-metals adsorption process in the batch mode was undertaken to evaluate the effect of adsorbent mass, contact time, pH, Temperature, and initial heavy metals concentration. The kinetic data were analyzed using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetic models. According to the modeling of the experimental results, the adsorption kinetics of heavy metals were adapted to the pseudo-second-order model. The adsorption isotherms were evaluated by the Langmuir and Freundlich isotherm models. The experimental isotherm data of heavy metals were better fitted with the Langmuir model rather than Freundlich isotherm models. The maximum experimental adsorption capacities (Qmax) predicted by the Langmuir model are 15.23 mg/g for Cd (II), 17.54 mg/g for Cr (VI) and 16.36 mg/g for As (III). The values of thermodynamic parameters revealed that the heavy metals adsorption was exothermic, favorable, and spontaneous in nature. The desorption process of heavy metals showed that this raw rock had excellent recycling capacity. Based on the results, these untreated clays can be used as inexpensive and environmentally friendly adsorbents to treat water contaminated by heavy metals.


2017 ◽  
Vol 2 (1) ◽  
pp. 13-26
Author(s):  
Tengku Khamanur Azma Tg. Mohd Zamri ◽  
Mimi Sakinah Abd Munaim ◽  
Zularisam Ab Wahid

Natural dye extracted from the rhizome of Curcuma longa L. were applied to bamboo yarns using exhaustion dyeing process. This study investigates the dyeing behaviour of Curcumin; the major color component isolated from rhizomes of Curcuma longa L.on bamboo yarn. Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich isotherm models were used to test the adsorption process of curcumin on bamboo yarn. Comparison of regression coefficient value indicated that the Freundlich isotherm most fitted to the adsorption of curcumin onto bamboo yarn. Furthermore, the kinetics study on this research fitted the pseudo-second order model which indicates that the basis of interaction was chemical adsorption.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 626 ◽  
Author(s):  
Salah ◽  
Gaber ◽  
Kandil

The sorption of uranium and thorium from their aqueous solutions by using 8-hydroxyquinoline modified Na-bentonite (HQ-bentonite) was investigated by the batch technique. Na-bentonite and HQ-bentonite were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) spectroscopy. Factors that influence the sorption of uranium and thorium onto HQ-bentonite such as solution pH, contact time, initial metal ions concentration, HQ-bentonite mass, and temperature were tested. Sorption experiments were expressed by Freundlich and Langmuir isotherms and the sorption results demonstrated that the sorption of uranium and thorium onto HQ-bentonite correlated better with the Langmuir isotherm than the Freundlich isotherm. Kinetics studies showed that the sorption followed the pseudo-second-order kinetic model. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° indicated that the sorption of uranium and thorium onto HQ-bentonite was endothermic, feasible, spontaneous, and physical in nature. The maximum adsorption capacities of HQ-bentonite were calculated from the Langmuir isotherm at 303 K and were found to be 63.90 and 65.44 for U(VI) and Th(IV) metal ions, respectively.


2018 ◽  
Vol 197 ◽  
pp. 05002 ◽  
Author(s):  
Citra Deliana Dewi Sundari ◽  
Soni Setiadji ◽  
Yusuf Rohmatullah ◽  
Sanusi Sanusi ◽  
Denia Febby Nurbaeti ◽  
...  

Rice husk has a high silica content, so it can be utilized as silica source for zeolite synthesis. In this research, synthesis of zeolite L has been done using silica from rice husk ash without organic template. The synthesized zeolite L is then used as an adsorbent to adsorb methylene blue dye. The steps of zeolite L synthesis include: silica extraction from rice husk ash using NaOH and zeolite L synthesis using hydrothermal method with molar ratio 10 SiO2: Al2O3: 4 K2O: 100 H2O at 170°C for 24 hours. The resulting Zeolite L was then characterized by XRD and SEM. The absorption capacity of methylene blue solution by zeolite L was observed experimentally through the effect of pH of the solution, contact time, and initial concentration of the solution, then determining the isotherm and its absorption kinetics. From XRD and SEM results of zeolite L sample, it is shown that zeolite L has been formed and its particle morphology is a hollow cylinder with cylinder diameter of 0.049 - 0.123 μm. The adsorption process refers to the Freundlich isotherm model which provides the highest correlation coefficient. The methylene blue adsorption process by zeolite L follows pseudo second-order kinetics.


Sign in / Sign up

Export Citation Format

Share Document