scholarly journals Experimental Study of the Effects of Some Selected Geotechnical Indices on the Unconfined Compressive Strength of Lateritic Soil

Author(s):  
G.O Adunoye ◽  
O.C Onah ◽  
F.O Ajibade

This study undertook an experimental study of the comparative effects of Atterberg limits, particles size and compaction parameters on the unconfined compressive strength of selected soils. This was with a view to ascertaining which of the combinations of the soil properties will produce a good prediction of the unconfined compressive strength. To achieve this aim, soil samples were obtained from selected locations within Ife Central Local Government Area, Osun State, Nigeria. The following tests were conducted on the soil samples, following standard procedures: natural moisture content determination, specific gravity, Atterberg limits, compaction and unconfined compressive strength. Using Regression tool, the results obtained from the laboratory tests were used to develop the relationships between each of the index properties and unconfined compressive strength. Results showed that the natural moisture content of soil samples ranges between 18.48 % and 25.03 %; specific gravity ranges between 2.35 and 2.69; liquid limit ranges between 39.95 % and 83.98 %; plastic limit ranges between 29.32 % and 51.18 %; and plasticity index is between 8.74 % and 33.56 %. The maximum dry density ranges between 15.30kN/m3 and 19.30kN/m3 with their optimum moisture contents ranging between 13.80 % and 35.50 % while unconfined compressive strength is between 36.00 kN/m2 and 97.14 kN/m2. The results of regression analysis showed that effective size and coefficient of uniformity have the greatest effect (R2 = 0.82) on unconfined compressive strength of the tested soil samples. Therefore, the study concluded that effective size and coefficient of uniformity could be used to estimate the unconfined compressive strength of the soils.

2020 ◽  
Vol 8 (2) ◽  
pp. 35
Author(s):  
Thompson Henry Tolulope Ogunribido ◽  
Tunde Ezekiel Fadairo

Twenty soil samples collected from the failed portions in the study area were air dried for two weeks before analyses. Each soil samples were subjected to eight engineering tests which include: natural moisture content, atterberg limit, specific gravity, compaction, unconfined compressive strength, California bearing ratio, grain size and hydrometer analysis. Results showed that the natural moisture content ranged from 17.7% to 37.8%, liquid limit from 48.5% to 62.4%, plastic limit from 18.3% to 26.8%, plasticity index from 25.7% to 37.7%, shrinkage limit from 5.8%-12.5%, optimum moisture content from 14.2% to 32.4%, maximum dry density from 1301 Kg/rn3 to 2002 Kg/rn3. Soaked California bearing ratio ranged from 5% to 17%, unsoaked from 15% to 38%, specific gravity from 2.5 to 2.68, unconfined compressive strength r from 112.8 Kpa to 259.7 Kpa, shear strength from 56.4 Kpa to 129.9 Kpa and hydrometer analysis from 48.5% to 72.1%. Based on the Federal Government specifications for pavement construction, for the soil to be suitable, stabilization with bitumen, Portland cement, lime, coal fly ash, and saw dust should be done. Road pavement failure along Arigidi – Oke Agbe road was due to poor engineering geological condition of the sub-grade soils and poor drainage systems.  


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Anigilaje B Salahudeen ◽  
Ja’afar A Sadeeq

The study investigate the suitability of subgrade soil in Baure Local Government Area of Kastina State Nigeria for road construction. The strength properties of the  subgrade was improved using lime and cement. Several analysis including the particle size distribution, specific gravity, Atterberg limits, compaction characteristics, unconfined compressive strength and California bearing ratio tests were performed on natural and lime/cement treated soil samples in accordance with BS 1377 (1990) and BS 1924 (1990) respectively. Soil specimens were prepared by mixing the soil with lime and cement in steps of 0, 3, 6, and 9% by weight of dry soil in several percentage combinations. The Atterberg limits of the weak subgrade soils improved having a minimum plasticity index value of 5.70 % at 3%Lime/6%Cement contents. The maximum dry density (MDD) values obtained showed a significant improvement having a peak value of 1.66 kN/m3 at 9%Lime/9%Cement contents. Similarly, a minimum value of 18.50 % was observed for optimum moisture content at 9%Lime/9%Cement contents which is a desirable reduction from a value of 25.00 % for the natural soil. The unconfined compressive test value increased from 167.30 kN/m2 for the natural soil to 446.77 kN/m2 at 9%Lime/9%Cement contents 28 days curing period. Likewise, the soaked California bearing ratio values increased from 2.90 % for the natural soil to 83.90 % at 9%Lime/9%Cement contents. Generally, there were improvements in the engineering properties of the weak subgrade soil when treated with lime and cement. However, the peak UCS value of 446.77 kN/m2 fails to meet the recommended UCS value of 1710 KN/m2 specified by TRRL (1977) as a criterion for adequate stabilization using Ordinary Portland Cement.            Keywords: Weak subgrade soil, Lime, Cement, Atterberg limits, Maximum dry density, Optimum moisture content, Unconfined compressive strength, California bearing ratio


Author(s):  
I.T. Peni ◽  

The study of geotechnical index properties of soils in Oworoshoki, Kosofe, Lagos State was conducted to characterize and classify the index properties of soil samples. Disturbed and undisturbed soils were collected at different shallow depths (1m, 2m and 3m) from the study area and laboratory test was conducted. The laboratory test conducted includes natural moisture content, atterberg limits (liquid limit and plastic limit), particle size distribution, specific gravity, unit weight and hydrometer. The results of the test were gotten: natural moisture content as 23.5%, 24.5% and 25.3% , liquid limits (LL) 28.68%, 26.64% and 29.10%, Oworoshoki is non-plastic for the three depths i.e. plastic limit (PL) is 0, particle size distribution percentage passing through BS #200 (0.075mm) are 95.97 %, 97.97%, 98.10% and this shows that the soil sample contain much silt, the samples are non-plastic for all depths (1m, 2m and 3m), specific gravity as 2.61, 2.55 and 2.60, unit weight as 17.5 KN/m3, 18.1kn/m3 and 18.9KN/m3 and hydrometer percentage passing through BS #200 (0.075mm) as 95.97% at 1.0m depth, 97.97% at 2.0m depth and 98.10% at 3.0m depth. Hydrometer test was conducted because 95.97% passes sieve 0.075mm.This shows that the soil contain high amount of silt. Soils from depth 1.0m, 2.0m and 3.0m are non-plastic (NP) because the Plastic Index (PI=0) and the soil samples are classified as A – 3 according to American Association of State Highway and Transportation Officials (AASHTO) System.


2020 ◽  
Vol 6 ◽  
pp. 24-32
Author(s):  
Muhammad Israil ◽  
Muhammad Ashraf ◽  
Muhammad Fahim ◽  
Rashid Rehan ◽  
Sajjad Wali Khan ◽  
...  

This study presents experimental investigation of indigenous clays mixed with Bentonite to assess their suitability in potential use as clay liners. Soil samples with 0, 4, 8, and 12% Bentonite content from three different sites in Peshawar region were tested for various geotechnical properties. Grain size distribution, specific gravity, Atterberg limits and free swell were found through laboratory tests using appropriate ASTM procedures. Maximum dry density and optimum moisture content were calculated using Atterberg limits in available relationships. Finally, one dimensional consolidation tests were conducted to find relevant parameters for calculating hydraulic conductivity. A decrease in specific gravity, increase in free swell, and in optimum moisture content, decline in maximum dry density and hydraulic conductivity was observed with increase in Bentonite content across all three soil samples. During free swell, the soil clusters become larger leading to formation of floccules resulting in the narrowing of inter-particle space and thus blocking of permeable paths. It is concluded that 8% Bentonite content by weight yields a suitable mixture for a clay liner that has hydraulic conductivity in the range of recommended limits.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Tanveer Ahmed Khan ◽  
Mohd Raihan Taha

Bioenzymes are organic degradable materials, currently introduced as soil improvement additives. In this experimental study, three types of bioenzymes from three different countries were used to improve Universiti Kebangsaan Malaysia (UKM) soil. UKM soil has properties quite similar to soils recommended as suitable by bioenzyme suppliers. The effect of the three bioenzymes on Atterberg limits, compaction characteristics, and unconfined compressive strength was studied. Controlled untreated and treated samples for two dosages at curing times up to three months were prepared and tested after completion of the curing period. Some results showed little improvement in compaction characteristics, and unconfined compressive strength, but no notable improvement was noticed in Atterberg limits. X-ray diffraction (XRD), X-ray fluorescence (XRF), and field emission scanning electron microscopy (FESEM) tests were conducted for untreated and treated soil samples after two months of curing. XRD and XRF did not show any change in mineralogy and chemical composition between controlled untreated samples and samples treated with the three bioenzymes. However, the FESEM images revealed a denser packing of particles for soil samples treated with two of the bioenzymes.


2021 ◽  
Vol 13 (1) ◽  
pp. 1523-1535
Author(s):  
Syed Husnain Ali Shah ◽  
Mohammad Arif ◽  
Qasim ur Rehman ◽  
Fawaz Manzoor

Abstract This study explores how dolerite cutting waste could be utilized for improving the quality of compacted clay soils. Different proportions of dolerite waste powder with varying grain sizes were used as admixtures and their impact on clay soil properties investigated. Ten samples were prepared by mixing clay soil with different proportions of dolerite waste powder having grain sizes of 0.210, 0.297, and 0.420 mm. The resulting samples were subjected to Proctor compaction, and their maximum dry density and optimum moisture content were measured. Next, all the compacted samples were subjected to geotechnical testing, including the determination of Atterberg limits, California bearing ratio (CBR), unconfined compressive strength, and specific gravity (Gs). The values of compaction parameters, Atterberg limits, and Gs were utilized for finding the porosity, void ratio, saturation potential, liquidity index (LI), and consistency index (CI). The results demonstrate that the addition of dolerite powder produces a substantial improvement in the plasticity index, compaction parameters, CBR, unconfined compressive strength, Gs, porosity, void ratio, degree of saturation, LI, and CI. The foremost reason for this improvement is the presence of denser and less water-adoring minerals in the added dolerite relative to pristine clay soil. Furthermore, the observed positive impact on the soils’ geotechnical comportment is comparatively higher with coarser than finer dolerite because of the decrease in surface area that causes a reduction in the moisture content and porosity but an increase in the density of soil.


2020 ◽  
Vol 14 (1) ◽  
pp. 278-285
Author(s):  
Hai-Bang Ly ◽  
Binh Thai Pham

Aims: Understanding the mechanical performance and applicability of soils is crucial in geotechnical engineering applications. This study investigated the possibility of application of the Random Forest (RF) algorithm – a popular machine learning method to predict the soil unconfined compressive strength (UCS), which is one of the most important mechanical properties of soils. Methods: A total number of 118 samples collected and their tests derived from the laboratorial experiments carried out under the Long Phu 1 power plant project, Vietnam. Data used for modeling includes clay content, moisture content, specific gravity, void ratio, liquid limit and plastic limit as input variables, whereas the target is the UCS. Several assessment criteria were used for evaluating the RF model, namely the correlation coefficient (R), root mean squared error (RMSE) and mean absolute error (MAE). Results: The results showed that RF exhibited a strong capability to predict the UCS, with the R value of 0.914 and 0.848 for the training and testing datasets, respectively. Finally, a sensitivity analysis was conducted to reveal the importance of input parameters to the prediction of UCS using RF. The specific gravity was found as the most affecting variable, following by clay content, liquid limit, plastic limit, moisture content and void ratio. Conclusion: This study might help in the accurate and quick prediction of the UCS for practice purpose.


2018 ◽  
Vol 53 ◽  
pp. 04021
Author(s):  
SHAO Yong ◽  
LIU Xiao-li ◽  
ZHU Jin-jun

Industrial alkali slag is the discharge waste in the process of alkali production. About one million tons of alkali slag is discharged in China in one year. It is a burden on the environment, whether it is directly stacked or discharged into the sea. If we can realize the use of resources, it is a multi-pronged move, so alkali slag is used to improve solidified marine soft soil in this paper. The test results show that the alkali residue can effectively improve the engineering properties of marine soft soil. Among them, the unconfined compressive strength and compressive modulus are increased by about 10 times, and the void ratio and plasticity index can all reach the level of general clay. It shows that alkali slag has the potential to improve marine soft soil and can be popularized in engineering.


Holzforschung ◽  
2003 ◽  
Vol 57 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Y. Liu ◽  
A.W.C. Lee

Summary This study was conducted to explore basic physical and mechanical properties of parallel strand lumber (PSL) made exclusively from southern pine and yellow-poplar, respectively, and to examine their relationships using statistical analysis. Small specimens were prepared from commercial southern pine PSL and yellow-poplar PSL billets and tested for specific gravity, moisture content, dimensional stability, bending properties, shear strength and compressive strength. Results indicate average specific gravity of southern pine PSL is higher than that of yellow-poplar PSL, while their average moisture content and dimensional stability are very similar. Southern pine PSL has higher average modulus of elasticity but lower average modulus of rupture than yellow-poplar PSL. While average longitudinal shear strength does not exhibit differences between southern pine PSL and yellow-poplar PSL, average compressive strength of southern pine PSL is higher than that of yellow-poplar PSL. There are positive correlations among modulus of elasticity, modulus of rupture and specific gravity. PSL improves some properties of solid wood from which PSL is made.


2013 ◽  
Vol 838-841 ◽  
pp. 926-929
Author(s):  
Xia Zhao

Take the silty clay and clay as the research object, the correlation between bulk density, moisture content, cohesion, friction angle and unconfined compressive strength was analyzed using laboratory tests, and the results showed that soil cohesion, friction angle and unconfined compressive strength with good correlation, the correlation coefficients were all above 0.9, while severe and soil moisture content and unconfined compressive strength of correlation is weak, followed by the correlation formulas of the index and unconfined compressive strength were established, these formulas can used to predict the unconfined compressive strength of soil.


Sign in / Sign up

Export Citation Format

Share Document