scholarly journals Investigation of β-Ga2O3-based HEMT for Low Noise Amplification and RF Application

Author(s):  
Trupti Lenka ◽  
Rajan Singh ◽  
Deepak Kumar Panda ◽  
Hieu Nguyen

Here we demonstrate a two-dimensional β-gallium oxide-based high electron mobility transistor (HEMT) comprising of a finite gap—access region gap (L_ARG ) in Ohmic-contact access regions with record transconductance linearity. Apart from limiting two-dimensional electron gas (2DEG) density n_s dependency on gate voltage, higher saturation current is estimated for the proposed design. Since the access regions length directly affects the Capacitance of the device and resultant switching applications. In this work, the effect of the gate-source and gate-drain length on device linearity is performed using Atlas-2D simulations. C-V characteristics of the proposed device are explained based on the physical explanation and validated using appropriate models. The higher values of transconductance g_m and current gain cut-off frequency f_T on a large span of operating voltages ensure improved transistor performance for low-noise amplification and RF application and are reported for the first time.<br>

2021 ◽  
Author(s):  
Trupti Lenka ◽  
Rajan Singh ◽  
Deepak Kumar Panda ◽  
Hieu Nguyen

Here we demonstrate a two-dimensional β-gallium oxide-based high electron mobility transistor (HEMT) comprising of a finite gap—access region gap (L_ARG ) in Ohmic-contact access regions with record transconductance linearity. Apart from limiting two-dimensional electron gas (2DEG) density n_s dependency on gate voltage, higher saturation current is estimated for the proposed design. Since the access regions length directly affects the Capacitance of the device and resultant switching applications. In this work, the effect of the gate-source and gate-drain length on device linearity is performed using Atlas-2D simulations. C-V characteristics of the proposed device are explained based on the physical explanation and validated using appropriate models. The higher values of transconductance g_m and current gain cut-off frequency f_T on a large span of operating voltages ensure improved transistor performance for low-noise amplification and RF application and are reported for the first time.<br>


2012 ◽  
Vol 217-219 ◽  
pp. 2393-2396 ◽  
Author(s):  
Han Guo ◽  
Wu Tang ◽  
Wei Zhou ◽  
Chi Ming Li

The electrical properties of AlGaN/GaN heterojunction high electron mobility transistor (HEMT) are simulated by using sentaurus software. This paper compares two structures, the HEMT with GaN cap layer and the HEMT without GaN cap layer. The sentaurus software simulates the DC and AC characteristics of the two AlGaN/GaN HEMT structures. The HEMT with GaN cap layer can increase the maximum transconductance gm from 177ms/mm to 399ms/mm when the doping concentration of the cap layer is 3×1018cm-3 compared with the other structure under the same conditions. The simulation results indicate that the HEMT with cap layer can increase maximum transconductance gm, saturation current Ids, current-gain cutoff frequency fT, maximum oscillation frequency fmax and reduce the series resistance of the drain to source compared with the HEMT without GaN cap layer. The large Ids of the HEMT with cap layer is attributed to the increase of the concentration of two dimensional electron gas (2DEG). Moreover, the change of the doping concentration of the cap layer will affect the gm and Ids.


Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 885 ◽  
Author(s):  
Yan Gu ◽  
Dongmei Chang ◽  
Haiyan Sun ◽  
Jicong Zhao ◽  
Guofeng Yang ◽  
...  

An inserted novel polarization-graded AlGaN back barrier structure is designed to enhance performances of In0.17Al0.83N/GaN high electron mobility transistor (HEMT), which is investigated by the two-dimensional drift-diffusion simulations. The results indicate that carrier confinement of the graded AlGaN back-barrier HEMT is significantly improved due to the conduction band discontinuity of about 0.46 eV at interface of GaN/AlGaN heterojunction. Meanwhile, the two-dimensional electron gas (2DEG) concentration of parasitic electron channel can be reduced by a gradient Al composition that leads to the complete lattice relaxation without piezoelectric polarization, which is compared with the conventional Al0.1Ga0.9N back-barrier HEMT. Furthermore, compared to the conventional back-barrier HEMT with a fixed Al-content, a higher transconductance, a higher current and a better radio-frequency performance can be created by a graded AlGaN back barrier.


Sign in / Sign up

Export Citation Format

Share Document