scholarly journals Ultrasound longitudinal-wave anisotropy estimation in muscle tissue

Author(s):  
Naiara Korta Martiartu ◽  
Saulė Simutė ◽  
Marga B. Rominger ◽  
Thomas Frauenfelder

<p> The velocity of ultrasound longitudinal waves (speed of sound) is emerging as a valuable biomarker for a wide range of diseases, including musculoskeletal disorders. Muscles are fiber-rich tissues that exhibit anisotropic behavior, meaning that velocities vary with the wave-propagation direction. Quantifying anisotropy is therefore essential to improve velocity estimates while providing a new metric that relates to both muscle composition and architecture. This work presents a method to estimate longitudinal-wave anisotropy in transversely isotropic tissues. We assume elliptical anisotropy and consider an experimental setup that includes a flat reflector located in front of the linear probe. Moreover, we consider transducers operating multistatically. This setup allows us to measure first-arrival reflection traveltimes. Unknown muscle parameters are the orientation angle of the anisotropy symmetry axis and the velocities along and across this axis. We derive analytical expressions for the relationship between traveltimes and anisotropy parameters, accounting for reflector inclinations. To analyze the structure of this nonlinear forward problem, we formulate the inversion statistically using the Bayesian framework. Solutions are probability density functions useful for quantifying uncertainties in parameter estimates. Using numerical examples, we demonstrate that all parameters can be well constrained when traveltimes from different reflector inclinations are combined. Results from a wide range of acquisition and medium properties show that uncertainties in velocity estimates are substantially lower than expected velocity differences in muscle. Thus, our formulation could provide accurate muscle anisotropy estimates in future clinical applications.</p> p { margin-bottom: 0.25cm; line-height: 115%; background: transparent }

2021 ◽  
Author(s):  
Naiara Korta Martiartu ◽  
Saulė Simutė ◽  
Marga B. Rominger ◽  
Thomas Frauenfelder

<p> The velocity of ultrasound longitudinal waves (speed of sound) is emerging as a valuable biomarker for a wide range of diseases, including musculoskeletal disorders. Muscles are fiber-rich tissues that exhibit anisotropic behavior, meaning that velocities vary with the wave-propagation direction. Quantifying anisotropy is therefore essential to improve velocity estimates while providing a new metric that relates to both muscle composition and architecture. This work presents a method to estimate longitudinal-wave anisotropy in transversely isotropic tissues. We assume elliptical anisotropy and consider an experimental setup that includes a flat reflector located in front of the linear probe. Moreover, we consider transducers operating multistatically. This setup allows us to measure first-arrival reflection traveltimes. Unknown muscle parameters are the orientation angle of the anisotropy symmetry axis and the velocities along and across this axis. We derive analytical expressions for the relationship between traveltimes and anisotropy parameters, accounting for reflector inclinations. To analyze the structure of this nonlinear forward problem, we formulate the inversion statistically using the Bayesian framework. Solutions are probability density functions useful for quantifying uncertainties in parameter estimates. Using numerical examples, we demonstrate that all parameters can be well constrained when traveltimes from different reflector inclinations are combined. Results from a wide range of acquisition and medium properties show that uncertainties in velocity estimates are substantially lower than expected velocity differences in muscle. Thus, our formulation could provide accurate muscle anisotropy estimates in future clinical applications.</p> p { margin-bottom: 0.25cm; line-height: 115%; background: transparent }


2021 ◽  
Author(s):  
Naiara Korta Martiartu ◽  
Saulė Simutė ◽  
Thomas Frauenfelder ◽  
Marga B. Rominger

<p> The velocity of ultrasound longitudinal waves (speed of sound) is emerging as a valuable biomarker for a wide range of diseases, including musculoskeletal disorders. Muscles are fiber-rich tissues that exhibit anisotropic behavior, meaning that velocities vary with the wave-propagation direction. Quantifying anisotropy is therefore essential to improve velocity estimates while providing a new metric that relates to both muscle composition and architecture. This work presents a method to estimate longitudinal-wave anisotropy in transversely isotropic tissues. We assume elliptical anisotropy and consider an experimental setup that includes a flat reflector located in front of the linear probe. Moreover, we consider transducers operating multistatically. This setup allows us to measure first-arrival reflection traveltimes. Unknown muscle parameters are the orientation angle of the anisotropy symmetry axis and the velocities along and across this axis. We derive analytical expressions for the relationship between traveltimes and anisotropy parameters, accounting for reflector inclinations. To analyze the structure of this nonlinear forward problem, we formulate the inversion statistically using the Bayesian framework. Solutions are probability density functions useful for quantifying uncertainties in parameter estimates. Using numerical examples, we demonstrate that all parameters can be well constrained when traveltimes from different reflector inclinations are combined. Results from a wide range of acquisition and medium properties show that uncertainties in velocity estimates are substantially lower than expected velocity differences in muscle. Thus, our formulation could provide accurate muscle anisotropy estimates in future clinical applications.</p><br>


2020 ◽  
pp. 60-67
Author(s):  
Alexander A. Khlybov ◽  
Yuri G. Kabaldin ◽  
Maksim S. Anosov ◽  
Dmitry A. Ryabov ◽  
Yuri I. Matveev

The paper presents the results of the study of the relationship between the velocity of propagation of longitudinal waves in a metal with the values ​​of impact toughness and hardness in a wide range of low temperatures. It’s been found that with a decrease of temperature, an increase of hardness, a decrease of impact toughness and an increase of the velocity of propagation of a longitudinal wave in the studied metals are observed, and the velocity of propagation of a longitudinal wave has a close correlation with the characteristics under consideration. An increase of the speed of sound with decreasing temperature, in our opinion, is explained by an increase of the thermal conductivity of metals. Thus, by the values ​​of the speed of sound propagation in metals, it is possible to predict the level of its impact toughness, as well as hardness at low temperatures, and, consequently, the tendency to brittle fracture of structures.


2008 ◽  
pp. 61-76
Author(s):  
A. Porshakov ◽  
A. Ponomarenko

The role of monetary factor in generating inflationary processes in Russia has stimulated various debates in social and scientific circles for a relatively long time. The authors show that identification of the specificity of relationship between money and inflation requires a complex approach based on statistical modeling and involving a wide range of indicators relevant for the price changes in the economy. As a result a model of inflation for Russia implying the decomposition of inflation dynamics into demand-side and supply-side factors is suggested. The main conclusion drawn is that during the recent years the volume of inflationary pressures in the Russian economy has been determined by the deviation of money supply from money demand, rather than by money supply alone. At the same time, monetary factor has a long-run spread over time impact on inflation.


2021 ◽  
Vol 43 (1) ◽  
pp. 1-79
Author(s):  
Colin S. Gordon

Effect systems are lightweight extensions to type systems that can verify a wide range of important properties with modest developer burden. But our general understanding of effect systems is limited primarily to systems where the order of effects is irrelevant. Understanding such systems in terms of a semilattice of effects grounds understanding of the essential issues and provides guidance when designing new effect systems. By contrast, sequential effect systems—where the order of effects is important—lack an established algebraic structure on effects. We present an abstract polymorphic effect system parameterized by an effect quantale—an algebraic structure with well-defined properties that can model the effects of a range of existing sequential effect systems. We define effect quantales, derive useful properties, and show how they cleanly model a variety of known sequential effect systems. We show that for most effect quantales, there is an induced notion of iterating a sequential effect; that for systems we consider the derived iteration agrees with the manually designed iteration operators in prior work; and that this induced notion of iteration is as precise as possible when defined. We also position effect quantales with respect to work on categorical semantics for sequential effect systems, clarifying the distinctions between these systems and our own in the course of giving a thorough survey of these frameworks. Our derived iteration construct should generalize to these semantic structures, addressing limitations of that work. Finally, we consider the relationship between sequential effects and Kleene Algebras, where the latter may be used as instances of the former.


2021 ◽  
pp. 1-8
Author(s):  
Paul Theo Zebhauser ◽  
Achim Berthele ◽  
Marie-Sophie Franz ◽  
Oliver Goldhardt ◽  
Janine Diehl-Schmid ◽  
...  

Background: Tau proteins are established biomarkers of neuroaxonal damage in a wide range of neurodegenerative conditions. Although measurement of total-Tau in the cerebrospinal fluid is widely used in research and clinical settings, the relationship between age and total-Tau in the cerebrospinal fluid is yet to be fully understood. While past studies reported a correlation between age and total-Tau in the cerebrospinal fluid of healthy adults, in clinical practice the same cut-off value is used independently of patient’s age. Objective: To further explore the relationship between age and total-Tau and to disentangle neurodegenerative from drainage-dependent effects. Methods: We analyzed cerebrospinal fluid samples of 76 carefully selected cognitively healthy adults and included amyloid-β 1–40 as a potential marker of drainage from the brain’s interstitial system. Results: We found a significant correlation of total-Tau and age, which was no longer present when correcting total-Tau for amyloid-β 1–40 concentrations. These findings were replicated under varied inclusion criteria. Conclusion: Results call into question the association of age and total-Tau in the cerebrospinal fluid. Furthermore, they suggest diagnostic utility of amyloid-β 1–40 as a possible proxy for drainage-mechanisms into the cerebrospinal fluid when interpreting biomarker concentrations for neurodegenerative diseases.


2020 ◽  
Vol 6 (1) ◽  
pp. 50-56
Author(s):  
Francesco Baino ◽  
Elisa Fiume

AbstractPorosity is known to play a pivotal role in dictating the functional properties of biomedical scaffolds, with special reference to mechanical performance. While compressive strength is relatively easy to be experimentally assessed even for brittle ceramic and glass foams, elastic properties are much more difficult to be reliably estimated. Therefore, describing and, hence, predicting the relationship between porosity and elastic properties based only on the constitutive parameters of the solid material is still a challenge. In this work, we quantitatively compare the predictive capability of a set of different models in describing, over a wide range of porosity, the elastic modulus (7 models), shear modulus (3 models) and Poisson’s ratio (7 models) of bioactive silicate glass-derived scaffolds produced by foam replication. For these types of biomedical materials, the porosity dependence of elastic and shear moduli follows a second-order power-law approximation, whereas the relationship between porosity and Poisson’s ratio is well fitted by a linear equation.


2015 ◽  
Vol 19 (5) ◽  
pp. 488-530
Author(s):  
Cynthia Fowler

This article examines the Religious Art of Today exhibition, originally held in 1944 at Boston’s Institute of Modern Art and then reformulated for the Dayton Art Institute in Ohio. The exhibition was eclectic in that it included a wide range of artists and a diversity of faiths, and engaged the debate held among museum professionals about the relationship between religion and modern art. The article focuses closely on Catholic, Jewish, and Navajo art included in the exhibition. The IMA’s commitment to the figurative tradition afforded artists the opportunity to explore their identities—as Jews, as Catholics, as Navajos—using recognizable religious subjects. That the works in the exhibition were selected as representative of modern art resulted in a convergence of discourses related to modern art with those of religious/cultural identity.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3888
Author(s):  
Boon-Peng Puah ◽  
Juriyati Jalil ◽  
Ali Attiq ◽  
Yusof Kamisah

Lycopene is a well-known compound found commonly in tomatoes which brings wide range of health benefits against cardiovascular diseases and cancers. From an anti-cancer perspective, lycopene is often associated with reduced risk of prostate cancer and people often look for it as a dietary supplement which may help to prevent cancer. Previous scientific evidence exhibited that the anti-cancer activity of lycopene relies on its ability to suppress oncogene expressions and induce proapoptotic pathways. To further explore the real potential of lycopene in cancer prevention, this review discusses the new insights and perspectives on the anti-cancer activities of lycopene which could help to drive new direction for research. The relationship between inflammation and cancer is being highlighted, whereby lycopene suppresses cancer via resolution of inflammation are also discussed herein. The immune system was found to be a part of the anti-cancer system of lycopene as it modulates immune cells to suppress tumor growth and progression. Lycopene, which is under the family of carotenoids, was found to play special role in suppressing lung cancer.


2020 ◽  
Vol 12 (9) ◽  
pp. 3668 ◽  
Author(s):  
Rakan Alyamani ◽  
Suzanna Long ◽  
Mohammad Nurunnabi

With the increase in awareness about the wide range of issues and adverse effects associated with the use of conventional energy sources came an increase in project management research related to sustainability and sustainable development. Part of that research is devoted to the development of sustainable project typologies that classify projects based on a variety of external factors that can significantly impact these projects. This research focuses on developing a sustainable project typology that classifies sustainable projects based on the external institutional influences. The typology explores the influence of the coercive, normative, and mimetic institutional isomorphisms on the expected level of change, level of uncertainty, project team skills and experience levels, and the level of technology information exchange in sustainable projects. Two case studies are presented to demonstrate the use of the typology to classify sustainable projects based on the external institutional influences.


Sign in / Sign up

Export Citation Format

Share Document