scholarly journals Prendersi cura del mondo

2021 ◽  
pp. 103-124
Author(s):  
Iain McGilchrist

Discusses the role that attention plays in constituting the world, rather than reducing phenomena to the brain level. Discusses the different kinds of attention delineated by the divided hemispheres of the brain. On the one hand the left hemisphere specialised in grasping and manipulating the world, whereas the right hemisphere specialises in relat-ing to and understanding the world. Discusses how reliance on one or the other kind of attention has cultural, psychological and social implications.

2008 ◽  
Vol 364 (1519) ◽  
pp. 955-963 ◽  
Author(s):  
Carlos-Eduardo Valencia-Alfonso ◽  
Josine Verhaal ◽  
Onur Güntürkün

Brain asymmetries are a widespread phenomenon among vertebrates and show a common behavioural pattern. The right hemisphere mediates more emotional and instinctive reactions, while the left hemisphere deals with elaborated experience-based behaviours. In order to achieve a lateralized behaviour, each hemisphere needs different information and therefore different representations of the world. However, how these representations are accomplished within the brain is still unknown. Based on the pigeon's visual system, we present experimental evidence that lateralized behaviour is the result of the interaction between the subtelencephalic ascending input directing more bilateral visual information towards the left hemisphere and the asymmetrically organized descending telencephalic influence on the tecto-tectal balance. Both the bilateral representation and the forebrain-modulated information processing might explain the left hemispheric dominance for complex learning and discrimination tasks.


2021 ◽  
Author(s):  
Lorin Friesen

Neurological research has made amazing strides in recent years. Enough is now known about what specific brain areas do to make it possible to start examining how various parts of the brain interact. What is missing is a general theory of cognition to tie all of this information together. Back in the 1980s, a cognitive theory was developed that began with a system of cognitive styles and was expanded through an in-depth study of biographies. It was discovered at that time that this theory mapped in a general way onto the brain. This cognitive theory, known as the theory of mental symmetry, has recently been tested as a meta-theory by using it to analyze a number of fields and theories dealing with human thought and behavior. This paper shows that personality traits that were discovered by mental symmetry correspond in detail to the functioning of brain regions described in current neurological papers. In brief, the cognitive model suggests that there are seven cognitive styles: There are four simple styles, and there are three composite styles that combine the thinking of the simple styles. Two of the simple styles use emotions and emphasize a circuit composed of orbitofrontal cortex, inferior frontal cortex, temporal lobe, and amygdala, with one in the left hemisphere and the other in the right hemisphere. The other two simple styles use confidence and emphasize a circuit consisting of dorsolateral frontal cortex, frontopolar cortex, parietal cortex, and hippocampus, again with one in the left hemisphere and the other in the right hemisphere. The three composite styles form a processing chain. The first composite style combines the two simple emotional styles and emphasizes the ventral striatum, and dopamine. This leads to the second composite style, which combines the two simple confidence styles and emphasizes the anterior cingulate, the dorsal striatum, and serotonin. This is followed by the third composite style which balances the functioning of the mind and emphasizes the thalamus and noradrenaline.


Author(s):  
Elizabeth Schechter

The largest fibre tract in the human brain connects the two cerebral hemispheres. A ‘split-brain’ surgery severs this structure, sometimes together with other white matter tracts connecting the right hemisphere and the left. Split-brain surgeries have long been performed on non-human animals for experimental purposes, but a number of these surgeries were also performed on adult human beings in the second half of the twentieth century, as a medical treatment for severe cases of epilepsy. A number of these people afterwards agreed to participate in ongoing research into the psychobehavioural consequences of the procedure. These experiments have helped to show that the corpus callosum is a significant source of interhemispheric interaction and information exchange in the ‘neurotypical’ brain. After split-brain surgery, the two hemispheres operate unusually independently of each other in the realm of perception, cognition, and the control of action. For instance, each hemisphere receives visual information directly from the opposite (‘contralateral’) side of space, the right hemisphere from the left visual field and the left hemisphere from the right visual field. This is true of the normal (‘neurotypical’) brain too, but in the neurotypical case interhemispheric tracts allow either hemisphere to gain access to the information that the other has received. In a split-brain subject however the information more or less stays put in whatever hemisphere initially received it. And it isn’t just visual information that is confined to one hemisphere or the other after the surgery. Rather, after split-brain surgery, each hemisphere is the source of proprietary perceptual information of various kinds, and is also the source of proprietary memories, intentions, and aptitudes. Various notions of psychological unity or integration have always been central to notions of mind, personhood, and the self. Although split-brain surgery does not prevent interhemispheric interaction or exchange, it naturally alters and impedes it. So does the split-brain subject as a whole nonetheless remain a unitary psychological being? Or could there now be two such psychological beings within one human animal – sharing one body, one face, one voice? Prominent neuropsychologists working with the subjects have often appeared to argue or assume that a split-brain subject has a divided or disunified consciousness and even two minds. Although a number of philosophers agree, the majority seem to have resisted these conscious and mental ‘duality claims’, defending alternative interpretations of the split-brain experimental results. The sources of resistance are diverse, including everything from a commitment to the necessary unity of consciousness, to recognition of those psychological processes that remain interhemispherically integrated, to concerns about what the moral and legal consequences would be of recognizing multiple psychological beings in one body. On the other hand underlying most of these arguments against the various ‘duality’ claims is the simple fact that the split-brain subject does not appear to be two persons, but one – and there are powerful conceptual, social, and moral connections between being a unitary person on the one hand and having a unified consciousness and mind on the other.


1947 ◽  
Vol 93 (391) ◽  
pp. 318-332 ◽  
Author(s):  
H. H. Fleischhacker

Commenting on the different symptoms produced by disturbances of the left hemisphere (aphasia, apraxia, etc.) and of the right (dreamy states, hallucinations, etc.), Hughlings Jackson on many occasions pointed out that there exists a “duality” of the brain; the anterior parts of the left hemisphere serving more controlled and objective purposes, the posterior parts of the right more subjective† and the anterior parts of the right serving more automatic purposes. Consequently, quoting Bastian and Rosenthal to support him, he tendered the suggestion that “mental” symptoms might be indicative of a disturbance particularly of the posterior parts of the right hemisphere (in right-handed people).


1982 ◽  
Vol 3 (3) ◽  
pp. 263-278 ◽  
Author(s):  
Rita Sloan Berndt ◽  
Alfonso Caramazza

ABSTRACTComprehension of six dimensional adjectives was found to be intact in groups of left hemisphere-damaged, right hemisphere-damaged and neurologically normal patients. Phrases with those adjectives were interpreted quite differently by left hemisphere-damaged patients than by the other two groups, and a subgroup of left-damaged patients appeared to be responsible for that group's deviant responses to phrases such as slightly bigger. All patients in the left-damaged group had some difficulty with negative phrases such as not big, however. Patients with right hemisphere-damage had difficulty interpreting only negative phrases with small. Results are interpreted with reference to Luria's discussion of semantic aphasia, and with regard to recent findings concerning the role of the right hemisphere in language comprehension.


2021 ◽  
Vol 4 ◽  
Author(s):  
Sergio Ledesma ◽  
Mario-Alberto Ibarra-Manzano ◽  
Dora-Luz Almanza-Ojeda ◽  
Pascal Fallavollita ◽  
Jason Steffener

In this study, Artificial Intelligence was used to analyze a dataset containing the cortical thickness from 1,100 healthy individuals. This dataset had the cortical thickness from 31 regions in the left hemisphere of the brain as well as from 31 regions in the right hemisphere. Then, 62 artificial neural networks were trained and validated to estimate the number of neurons in the hidden layer. These neural networks were used to create a model for the cortical thickness through age for each region in the brain. Using the artificial neural networks and kernels with seven points, numerical differentiation was used to compute the derivative of the cortical thickness with respect to age. The derivative was computed to estimate the cortical thickness speed. Finally, color bands were created for each region in the brain to identify a positive derivative, that is, a part of life with an increase in cortical thickness. Likewise, the color bands were used to identify a negative derivative, that is, a lifetime period with a cortical thickness reduction. Regions of the brain with similar derivatives were organized and displayed in clusters. Computer simulations showed that some regions exhibit abrupt changes in cortical thickness at specific periods of life. The simulations also illustrated that some regions in the left hemisphere do not follow the pattern of the same region in the right hemisphere. Finally, it was concluded that each region in the brain must be dynamically modeled. One advantage of using artificial neural networks is that they can learn and model non-linear and complex relationships. Also, artificial neural networks are immune to noise in the samples and can handle unseen data. That is, the models based on artificial neural networks can predict the behavior of samples that were not used for training. Furthermore, several studies have shown that artificial neural networks are capable of deriving information from imprecise data. Because of these advantages, the results obtained in this study by the artificial neural networks provide valuable information to analyze and model the cortical thickness.


Psychiatry ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 14-21
Author(s):  
E. V. Iznak ◽  
E. V. Damyanovich ◽  
N. S. Levchenko ◽  
I. V. Oleichik ◽  
A. F. Iznak

Background: non-suicidal self-injury (NSSI) in adolescence is a significant risk factor for suicide, and therefore, the search for neurobiological markers and predictors of risk for suicidal intentions and actions seems to be an urgent task. In particular, quantitative EEG parameters can be such predictors.Objective: to identify the features of EEG in female adolescents with endogenous depressive conditions, manifested only by NSSI without suicidal intentions, in comparison with the EEG of patients who had suicidal auto-aggressive behavior (SAB) in the structure of depression.Patients and methods: the study was conducted as a comparative clinical and neurophysiological. The study included 45 female patients aged 16–25 years with endogenous depressive conditions, divided into 2 subgroups: those who showed only NSSI (NSSI subgroup, 21 patients), or who had a history of SAB (SAB subgroup, 24 patients). Clinical-psychopathological, psychometric, neurophysiological and statistical methods were used.Results and its discussion: intergroup differences were revealed in relation to the ratio and hemispheric asymmetry of the EEG spectral power of narrow frequency sub-bands of the parietal-occipital alpha rhythm. In the SAB subgroup alpha-2 (9–11 Hz) rhythm spectral power is higher than in the NSSI subgroup, the focus of alpha-2 spectral power is located in the right hemisphere, and alpha-3 sub-band (11–13 Hz) spectral power is higher than of alpha-1 (8–9 Hz). In the NSSI subgroup, alpha-1 (8–9 Hz) sub-band spectral power are higher than of alpha-3 (11–13 Hz), and focuses of alpha-2 (9–11 Hz) and alpha-3 (11–13 Hz) rhythms are localized in the left hemisphere. The results are discussed in terms of functional specialization of the brain hemispheres in relation to the regulation of emotions and control of behavior.Conclusions: the spatial distribution of the EEG frequency components in the SAB subgroup reflects the greater activation of the brain left hemisphere that is more typical for the EEG of individuals with an increased risk of suicide. In the NSSI subgroup, the right hemisphere is relatively more activated that is more typical for EEG in depressive disorders.The results obtained allow the use of quantitative EEG data to clarify the degree of suicidal risk in depressed female adolescents with non-suicidal self-injury.


2021 ◽  
Author(s):  
Yuichiro Tsuji ◽  
Naosuke Nonoguchi ◽  
Daisuke Okuzaki ◽  
Yusuke Wada ◽  
Daisuke Motooka ◽  
...  

Abstract Background: This study investigated whether the effect of changes in the microenvironment of parenchymal brain tissue caused by radiotherapy for malignant brain tumors affect the recurrence and progression of glioma. Methods: 3 months after the same 65-Gy irradiation had been applied to the right hemisphere. Irradiated Fisher rats were divided into three groups for in vitro assay as follows. IR/Ipsi-brain; the right-hemisphere tissue was used for experiments. IR/Contra-brain; the left-hemisphere tissue was used. Sham-IR/Brain; sham-irradiation was applied to the brain, and the right-hemisphere tissue was used. The effects of proteins extracted from the brains directly or indirectly affected by irradiation on the growth of F98 cells, the effect on tube formation, the influence on tumor biology, and the influence on cytokine production were investigated. Additionally, irradiated animals were divided into three groups for in vivo assay as follows. IR/Ipis-tumor; F98 cells (a glioma cell line) were transplanted to the right hemisphere. IR/Contra-tumor; F98 cells were transplanted to the left hemisphere. Sham-IR/Tumor; F98 cells were transplanted to the right hemisphere without irradiation. The median survival time of F98 transplanted rats was also examined. Results: X-ray irradiation promoted the secretion of cytokines such as TNFα, TGF-β1, VEGF-A, and CXCL12 from the irradiated brain. F98 glioma cells implanted in the irradiated brains showed significantly high proliferation and angiogenesis ability, and the post-irradiation F98 tumor-implanted rats showed a shorter median survival time compared to the Sham-irradiation group.Conclusions: These results indicate that the up-regulation of CXCL12-CXCR4 axis by radiotherapy could promote tumor proliferation. Radiation therapy is a standard treatment for malignant gliomas including glioblastoma multiforme, but the current study suggests that the microenvironment around the brain tissue in the chronic phase after exposure to X-ray radiation becomes suitable for glioma cell growth and invasion.


2012 ◽  
Vol 10 (1) ◽  
pp. 51-53
Author(s):  
Vladimir Vladimirovich Mihkeev ◽  
Vera Vasilievna Marysheva ◽  
Boris Nikolaevich Bogomolov ◽  
Lubov Vladislavovna Zhukova-Williams

The effect of aminothiol antihipoxants amthizol and its analogue VM-606 on the resistance of the SHR mice males to an acute hypoxia with hypercapnia under conditions of isolated functioning of one of the hemispheres of the brain was studied. Antihypoxic agent amthizol 25 mg/kg increases life time of naïve mice by 46.2%. The drug acted on the sham-operated mice more slightly, increasing of their life only on 28.1% (p<0.01). Administration of amthizol under conditions of functioning of the right hemisphere significantly enhanced (+64.8%) the life time of mice. No antihypoxic effect was registered after administration of amthizol to mice with active left hemisphere: the result was the same as in mice without amthizol. Therefore, antihypoxic effect of amthizol was due to its action on the right (but not the left) hemisphere of the brain. VM-606 possessed more antihypoxic activity in comparison with amthizol. After unilateral cortical inactivation, VM-606 increased life time of mice both in active right and active left hemispheres, but in more degree in active right hemisphere. Thus, interhemispheric differences in resistance of mice to hypoxia with hypercapnia were diminished. Therefore, the differences between amthizol and VM-606 are the followings: amthizol inverts interhemispheric relations in hypoxia whereas VM-606 diminishes them.


1983 ◽  
Vol 11 (1) ◽  
pp. 65-76 ◽  
Author(s):  
John Meissner ◽  
Michael Pirot

Twenty males with a strong right hand preference underwent 120 simple reaction time trials to a 500 hz auditory stimulus presented to right, left and both ears. Ten Transcendental Meditators served as their own controls in twenty minute meditation and relaxation conditions and were also compared to a ten Non-Meditator control group who relaxed only in two 20-minute conditions. The reaction time trials were administered after the conditions. When the ears were compared to each other a significant right-ear (left hemisphere) advantage (REA) occurred in all relaxation conditions of the Meditator and Non-Meditator control groups. However, no REA emerged after meditation conditions of the Meditator group. The Meditator group after meditation compared to their own baseline relaxation condition showed a significant suppression of reaction time latencies to stimulation delivered to the left hemisphere and a significant facilitation to stimulation delivered to the right hemisphere. The meaning of these findings suggest Transcendental Meditation is an attentional strategy that disrupts the usual biases of the brain which also has implications as a clinical method. A neuropsychological explanation of the results suggest a comprehensive theory of Transcendental Meditation.


Sign in / Sign up

Export Citation Format

Share Document