scholarly journals 'Momordica charantia’ introducing a new rootstock for grafted cucumber under low-temperature stress

2021 ◽  
Vol 35 (2) ◽  
Author(s):  
Saber Mohammadnia ◽  
Maryam Haghighi

Cucumber is a sensitive vegetable to low temperatures. Grafting vegetables on different rootstocks can decrease the harmful effects of environmental stresses, including low-temperature stress. An experiment was performed to evaluate grafting cucumbers on different rootstocks at low temperatures. Cucumber growth and yield and photosynthesis traits were examined. Treatments were the optimum temperature (25±2°C), and cold temperature (15±3°C, Ts), and rootstocks, were Momordica charantia (Rmo), Cucurbita maxima (Rma), non-grafted (Rn) and self- grafted (Rs) with 4 replications. Shoot fresh and dry weight, chlorophyll, RWC, transpiration, decreased with temperature stress. The number of female flowers, electrolyte leakage, photosynthesis, stomatal conductance increased with Ts. First fruit emergence per plant, N, P, K, Mg concentration decreased with Ts stress. Transpiration, female flower, RWC, and stomata conductance, N, P, K, Ca, and phenol increased in Rma and Rmo. Mg was at the highest concentration in Rma and Na in Rn. All in all, using Rmo as well as Rma is recommended for rootstock as it causes more reproductive growth.

2021 ◽  
Author(s):  
Zhe Li ◽  
Luting Wen ◽  
Xia Wu ◽  
Junqi Qin ◽  
Zhong Chen ◽  
...  

Abstract Low temperatures limit the development of Oreochromis niloticus (tilapia), and an increase in low-temperature tolerance would increase yields. We studied the responses of tilapia to low temperatures. The fish were labeled CK, AA, BB, and CC based on treatment (25°C, 12°C/1 h, 12°C/24 h, and 12°C/48 h, respectively) with CK being the control group. We examined the transcriptome responses and the Na+/K+-ATPase activity of gill tissue in each group. The Na+/K+-ATPase activity varied with the treatment time. Transcriptome sequencing of 12 individuals yielded 585.51 million clean reads, and at least 83.26% of the genes were mapped to the reference genome. Comparative analysis revealed 12,448 genes with significantly differential expression, including 792, 1,827, 1,924 upregulated genes and 992, 3,056, 3,857 genes downregulated for AA, BB, and CC, respectively. Differentially expressed genes (DEGs) were validated using RT-PCR for five genes. Functional annotation analysis of the DEGs identified functions associated with response to low-temperature stress. When tilapia was subjected to low-temperature stress, expression changes occurred in genes associated with cytokine-cytokine receptor interaction, metabolic pathways, cell adhesion molecules, material transport, and immunity. The founding will help understand the effects of low temperature on fish and provide a theoretical basis for the tilapia breeding industry.


PLoS ONE ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. e0233130
Author(s):  
Yu Niu ◽  
Ziji Liu ◽  
Huang He ◽  
Xu Han ◽  
Zhiqiang Qi ◽  
...  

2020 ◽  
Author(s):  
Angie Geraldine Sierra Rativa ◽  
Artur Teixeira de Araújo Junior ◽  
Daniele da Silva Friedrich ◽  
Rodrigo Gastmann ◽  
Thainá Inês Lamb ◽  
...  

AbstractRice (Oryza sativa L.) ssp. indica is the most cultivated species in the South of Brazil. However, these plants face low temperature stress from September to November, which is the period of early sowing, affecting plant development during the initial stages of growth, and reducing rice productivity. This study aimed to characterize the root response to low temperature stress during the early vegetative stage of two rice genotypes contrasting in their cold tolerance (CT, cold-tolerant; and CS, cold-sensitive). Root dry weight and length, as well as number of root hairs, were higher in CT than CS when exposed to cold treatment. Histochemical analyses indicated that roots of CS genotype present higher levels of lipid peroxidation and H2O2 accumulation, along with lower levels of plasma membrane integrity than CT under low temperature stress. RNAseq analyses revealed that the contrasting genotypes present completely different molecular responses to cold stress. The number of over-represented functional categories was lower in CT than CS under cold condition, suggesting that CS genotype is more impacted by low temperature stress than CT. Several genes might contribute to rice cold tolerance, including the ones related with cell wall remodeling, cytoskeleton and growth, signaling, antioxidant system, lipid metabolism, and stress response. On the other hand, high expression of the genes SRC2 (defense), root architecture associated 1 (growth), ACC oxidase, ethylene-responsive transcription factor, and cytokinin-O-glucosyltransferase 2 (hormone-related) seems to be related with cold sensibility. Since these two genotypes have a similar genetic background (sister lines), the differentially expressed genes found here can be considered candidate genes for cold tolerance and could be used in future biotechnological approaches aiming to increase rice tolerance to low temperature.


Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 84
Author(s):  
Parviz Heidari ◽  
Mahdi Entazari ◽  
Amin Ebrahimi ◽  
Mostafa Ahmadizadeh ◽  
Alessandro Vannozzi ◽  
...  

Low-temperature stress is a type of abiotic stress that limits plant growth and production in both subtropical and tropical climate conditions. In the current study, the effects of 24-epi-brassinolide (EBR) as analogs of brassinosteroids (BRs) were investigated, in terms of hormone content, antioxidant enzyme activity, and transcription of several cold-responsive genes, under low-temperature stress (9 °C) in two different tomato species (cold-sensitive and cold-tolerant species). Results indicated that the treatment with exogenous EBR increases the content of gibberellic acid (GA3) and indole-3-acetic acid (IAA), whose accumulation is reduced by low temperatures in cold-sensitive species. Furthermore, the combination or contribution of BR and abscisic acid (ABA) as a synergetic interaction was recognized between BR and ABA in response to low temperatures. The content of malondialdehyde (MDA) and proline was significantly increased in both species, in response to low-temperature stress; however, EBR treatment did not affect the MDA and proline content. Moreover, in the present study, the effect of EBR application was different in the tomato species under low-temperature stress, which increased the catalase (CAT) activity in the cold-tolerant species and increased the glutathione peroxidase (GPX) activity in the cold-sensitive species. Furthermore, expression levels of cold-responsive genes were influenced by low-temperature stress and EBR treatment. Overall, our findings revealed that a low temperature causes oxidative stress while EBR treatment may decrease the reactive oxygen species (ROS) damage into increasing antioxidant enzymes, and improve the growth rate of the tomato by affecting auxin and gibberellin content. This study provides insight into the mechanism by which BRs regulate stress-dependent processes in tomatoes, and provides a theoretical basis for promoting cold resistance of the tomato.


2019 ◽  
Vol 26 (2) ◽  
pp. 280
Author(s):  
Penglei JIANG ◽  
Yingdi SHI ◽  
Yanwen HOU ◽  
Bingshe HAN ◽  
Junfang ZHANG

2014 ◽  
Vol 39 (1) ◽  
pp. 26-30 ◽  
Author(s):  
Yu-zhi QIN ◽  
Jue CHEN ◽  
Zhen XING ◽  
Chang-zheng HE ◽  
Xing-yao XIONG

Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 271
Author(s):  
Muhammad Imran ◽  
Asim Mahmood ◽  
Günter Neumann ◽  
Birte Boelt

Low temperature during germination hinders germination speed and early seedling development. Zn seed priming is a useful and cost-effective tool to improve germination rate and resistance to low temperature stress during germination and early seedling development. Spinach was tested to improve germination and seedling development with Zn seed priming under low temperature stress conditions. Zn priming increased seed Zn concentration up to 48 times. The multispectral imaging technique with VideometerLab was used as a non-destructive method to differentiate unprimed, water- and Zn-primed spinach seeds successfully. Localization of Zn in the seeds was studied using the 1,5-diphenyl thiocarbazone (DTZ) dying technique. Active translocation of primed Zn in the roots of young seedlings was detected with laser confocal microscopy. Zn priming of spinach seeds at 6 mM Zn showed a significant increase in germination rate and total germination under low temperature at 8 °C.


Sign in / Sign up

Export Citation Format

Share Document