scholarly journals Drought assessment in the Pampanga River basin, the Philippines – Part 2: A comparative SPI approach for quantifying climate change hazards

Author(s):  
Vu Thuy Linh ◽  
Vo Ngoc Quynh Tram ◽  
Ho Minh Dung ◽  
Dang Nguyen Dong Phuong ◽  
Nguyen Duy Liem ◽  
...  

Author(s):  
F. Yuan ◽  
Y. Y. San ◽  
Y. Li ◽  
M. Ma ◽  
L. Ren ◽  
...  

Abstract. In this study, a framework to project the potential future climate change impacts on extreme hydrological drought events in the Weihe River basin in North China is presented. This framework includes a large-scale hydrological model driven by climate outputs from a regional climate model for historical streamflow simulations and future streamflow projections, and models for univariate drought assessment and copula-based bivariate drought analysis. It is projected by the univariate drought analysis that future climate change would lead to increased frequencies of extreme hydrological drought events with higher severity. The bivariate drought assessment using copula shows that future droughts in the same return periods as historical droughts would be potentially longer and more severe, in terms of drought duration and severity. This trend would deteriorate the hydrological drought situation in the Weihe River basin. In addition, the uncertainties associated with climate models, hydrological models, and univariate and bivariate drought analysis should be quantified in the future research to improve the reliability of this study.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Zhe Yuan ◽  
Jijun Xu ◽  
Jin Chen ◽  
Junjun Huo ◽  
Yangyue Yu ◽  
...  

To gain an insight into the spatiotemporal variability of drought events and to assess trends under future climate change scenarios are fundamental for making sound mitigation and adaptation strategies. A new drought index, standardized supply-demand water index (SSDI), has been proposed in this research. The SSDI describes drought from the view of water supply-demand relations using a simple water balance model. It was used to assess historical drought events in the middle and lower Jinsha river basin (MLJRB) located in the southwest China and applied to address the drought conditions in the MLJRB under current and future climates. The results showed the following: (1) The average drought area during 2001 to 2011 reached up to 9.9 × 103 km2, accounting for 35.4% of the whole farmland area in the MLJRB, which was about twice as the drought area during 1961 to 2000. The region for greater drought severity with more drought events and longer duration was mainly distributed in Dali, Chuxiong, Kunming, and Yuxi. (2) For the period 2021 to 2050, total drought area was projected to increase by 43.2%. The drought-prone regions could move further towards the northwest of the MLJRB.


Author(s):  
Pedram Mahdavi ◽  
Hossein Ghorbanizadeh Kharazi ◽  
Hossein Eslami ◽  
Narges Zohrabi ◽  
Majid Razaz

Abstract Global warming affected by human activities causes changes in the regime of rivers. Rivers are one of the most vital sources that supply fresh water. Therefore, management, planning, and proper use of rivers will be crucial for future climate change conditions. This study investigated the monitoring of hydrological drought in a future period to examine the impact of climate change on the discharging flow of the Zard River basin in Iran. Zard River is an important supplier of fresh and agricultural water in a vast area of Khuzestan province in Iran. A continuous rainfall-runoff model based on Soil Moisture Accounting (SMA) algorithm was applied to simulate the discharge flow under 10 scenarios (obtained from LARS-WG.6 software) of future climate change. Then, the Stream-flow Drought Index (SDI) and the Standard Precipitation Index (SPI) were calculated for each climate change scenario for the future period (2041–2060). The results of the meteorological drought assessment showed that near normal and moderate droughts had higher proportions among other drought conditions. Moreover, the hydrological drought assessment showed the occurrence of two new droughts (severe and extreme) conditions for the future period (2041–2060) that has never happened in the past (1997–2016).


2021 ◽  
Vol 13 (16) ◽  
pp. 9041
Author(s):  
Warda Panondi ◽  
Norihiro Izumi

The impacts of climate change are increasingly threatening the sustainability of ecosystems around the world. The Pulangi River Basin (PRB) in the Philippines is experiencing sedimentation beyond the tolerable amount (11.2 tons/ha/yr) due to land conversion and the effects of climate change. Changes in precipitation and temperature due to climate change are likely to further affect the annual runoff and sediment yield of PRB. In this study, the Soil and Water Assessment Tool (SWAT) was employed to simulate various scenarios of twelve downscaled climate projections from three Global Circulation Models (GCM) of CMIP5 under two Representative Concentration Pathways (RCP 4.5 and 6.0) for 2040–2069 and 2070–2099 timeframes, and the results were compared to a baseline period (1975–2005). This study revealed that the maximum mean annual precipitation is expected to increase by 39.10%, and the minimum and maximum temperatures are expected to increase by 3.04 °C and 3.83 °C, respectively. These observed changes correspond to an increase in runoff (44.58–76.80%) and sediment yield (1.33–26.28%) within the sub-basins. These findings suggest a general increase in the threat of severe flooding and excessive soil loss, leading to severe erosion and reservoir sedimentation throughout the PRB.


2016 ◽  
Vol 11 (6) ◽  
pp. 1091-1102 ◽  
Author(s):  
Maksym Gusyev ◽  
◽  
Akira Hasegawa ◽  
Jun Magome ◽  
Patricia Sanchez ◽  
...  

Drought is a slow-developing disaster of water shortages in water cycle components adversely affecting anthropogenic water use. This study introduces a drought assessment framework of standardized indices in Pampanga (Philippines), Solo (Indonesia), and Chao Phraya (Thailand) basins. We used three existing and developed two new standardized indices to characterize meteorological, agricultural, hydrological and socio-economic droughts. We constructed a 15-arcsec (about 0.45-km) grid block-wise TOP (BTOP) model with multipurpose dam operation at individual river basin using global datasets and calibrated BTOP models with daily river discharge and dam inflow data. The simulated irrigated area is also compared with historical drought damages at each river basin. The calibrated BTOP models were run with bias-corrected MRI-AGCM3.2S precipitation to evaluate droughts under climate change. The calculated standardized indices show similar drought timing of the 1982-1983, 1987-1988, 1991-1992, 1997-1998 and 2002-2003 droughts across three river basins. In addition, the timing of these droughts coincides with historical El Niño-Southern Oscillation (ENSO) cycle events. The projected future climates demonstrate a variability of dam inflows and drought severities between four cases of the worst (RCP8.5) climate change scenario. We conclude that standardized indices are useful tools to characterize droughts at water cycle components.


Author(s):  
Hitoshi UMINO ◽  
Maksym GUSYEV ◽  
Akira HASEGAWA ◽  
Yoji CHIDA
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document