scholarly journals Climate Change Impact on the Hydrologic Regimes and Sediment Yield of Pulangi River Basin (PRB) for Watershed Sustainability

2021 ◽  
Vol 13 (16) ◽  
pp. 9041
Author(s):  
Warda Panondi ◽  
Norihiro Izumi

The impacts of climate change are increasingly threatening the sustainability of ecosystems around the world. The Pulangi River Basin (PRB) in the Philippines is experiencing sedimentation beyond the tolerable amount (11.2 tons/ha/yr) due to land conversion and the effects of climate change. Changes in precipitation and temperature due to climate change are likely to further affect the annual runoff and sediment yield of PRB. In this study, the Soil and Water Assessment Tool (SWAT) was employed to simulate various scenarios of twelve downscaled climate projections from three Global Circulation Models (GCM) of CMIP5 under two Representative Concentration Pathways (RCP 4.5 and 6.0) for 2040–2069 and 2070–2099 timeframes, and the results were compared to a baseline period (1975–2005). This study revealed that the maximum mean annual precipitation is expected to increase by 39.10%, and the minimum and maximum temperatures are expected to increase by 3.04 °C and 3.83 °C, respectively. These observed changes correspond to an increase in runoff (44.58–76.80%) and sediment yield (1.33–26.28%) within the sub-basins. These findings suggest a general increase in the threat of severe flooding and excessive soil loss, leading to severe erosion and reservoir sedimentation throughout the PRB.

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 483
Author(s):  
Ümit Yıldırım ◽  
Cüneyt Güler ◽  
Barış Önol ◽  
Michael Rode ◽  
Seifeddine Jomaa

This study investigates the impacts of climate change on the hydrological response of a Mediterranean mesoscale catchment using a hydrological model. The effect of climate change on the discharge of the Alata River Basin in Mersin province (Turkey) was assessed under the worst-case climate change scenario (i.e., RCP8.5), using the semi-distributed, process-based hydrological model Hydrological Predictions for the Environment (HYPE). First, the model was evaluated temporally and spatially and has been shown to reproduce the measured discharge consistently. Second, the discharge was predicted under climate projections in three distinct future periods (i.e., 2021–2040, 2046–2065 and 2081–2100, reflecting the beginning, middle and end of the century, respectively). Climate change projections showed that the annual mean temperature in the Alata River Basin rises for the beginning, middle and end of the century, with about 1.35, 2.13 and 4.11 °C, respectively. Besides, the highest discharge timing seems to occur one month earlier (February instead of March) compared to the baseline period (2000–2011) in the beginning and middle of the century. The results show a decrease in precipitation and an increase in temperature in all future projections, resulting in more snowmelt and higher discharge generation in the beginning and middle of the century scenarios. However, at the end of the century, the discharge significantly decreased due to increased evapotranspiration and reduced snow depth in the upstream area. The findings of this study can help develop efficient climate change adaptation options in the Levant’s coastal areas.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2141 ◽  
Author(s):  
Saddique ◽  
Usman ◽  
Bernhofer

Projected climate changes for the 21st century may cause great uncertainties on the hydrology of a river basin. This study explored the impacts of climate change on the water balance and hydrological regime of the Jhelum River Basin using the Soil and Water Assessment Tool (SWAT). Two downscaling methods (SDSM, Statistical Downscaling Model and LARS-WG, Long Ashton Research Station Weather Generator), three Global Circulation Models (GCMs), and two representative concentration pathways (RCP4.5 and RCP8.5) for three future periods (2030s, 2050s, and 2090s) were used to assess the climate change impacts on flow regimes. The results exhibited that both downscaling methods suggested an increase in annual streamflow over the river basin. There is generally an increasing trend of winter and autumn discharge, whereas it is complicated for summer and spring to conclude if the trend is increasing or decreasing depending on the downscaling methods. Therefore, the uncertainty associated with the downscaling of climate simulation needs to consider, for the best estimate, the impact of climate change, with its uncertainty, on a particular basin. The study also resulted that water yield and evapotranspiration in the eastern part of the basin (sub-basins at high elevation) would be most affected by climate change. The outcomes of this study would be useful for providing guidance in water management and planning for the river basin under climate change.


2020 ◽  
Vol 38 (2A) ◽  
pp. 265-276
Author(s):  
Mahmoud S. Al- Khafaji ◽  
Rana D. Al- Chalabi

The impact of climate change on stream flow and sediment yield in Darbandikhan Watershed is an important challenge facing the water resources in Diyala River, Iraq. This impact was investigated using five Global Circulation Models (GCM) based climate change projection models from the A1B scenario of medium emission. The Soil and Water Assessment Tool (SWAT) was used to compute the temporal and spatial distribution of streamflow and sediment yield of the study area for the period 1984 to 2050. The daily-observed flow recorded in Darbandikhan Dam for the period from 1984 to 2013 was used as a base period for future projection. The initial results of SWAT were calibrated and validated using SUFI-2 of the SWAT-CUP program in daily time step considering the values of the Nash-Sutcliffe Efficiency (NSE) coefficient of determination (R2) as a Dual objective function. Results of NSE and R2 during the calibration (validation) periods were equal to 0.61 and 0.62(0.53 and 0.68), respectively. In addition, the average future prediction for the five climate models indicated that the average yearly flow and sediment yield in the watershed would decrease by about 49% and 44%, respectively, until the year 2050 compared with these of the base period from 1984 to 2013. Moreover, spatial analysis shows that 89.6 % and 90 % of stream flow and sediment come from the Iranian part of Darbandikhan watershed while the remaining small percent comes from Iraq, respectively. However, the middle and southern parts of Darbandikhan Watershed contribute by most of the stream...


Author(s):  
Saira Munawar ◽  
Muhammad Naveed Tahir ◽  
Muhammad Hassan Ali Baig

Abstract Climate change is a global issue and causes great uncertainties in runoff and streamflow projections, especially in high-altitude basins. The quantification of climatic indicators remains a tedious job for the scarcely gauged mountainous basin. This study investigated climate change by incorporating GCM (CCSM4) using the SDSM method for RCPs in the Jhelum river basin. Historical climatic data were coupled with Aphrodite data to cope with the scarcity of weather stations. SDSM was calibrated for the period 1976–2005 and validated for the period 2006–2015 using R2 and RMSE. Future climatic indicators were downscaled and debiased using the MB-BC method. The de-biased downscaled data and MODIS data were used to simulate discharge of Jhelum river basin using SRM. Simulated discharge was compared with measured discharge by using Dv% and NSE. The R2 and RMSE for SDSM range between 0.89–0.95 and 0.8–1.02 for temperature and 0.86–0.96 and 0.57–1.02 for precipitation. Projections depicted a rising trend of 1.5 °C to 3.8 °C in temperature, 2–7% in mean annual precipitation and 3.3–7.4% in discharge for 2100 as compared to the baseline period. Results depicted an increasing trend for climatic indicators and discharge due to climate change for the basin.


Author(s):  
J. Y. G. Santos ◽  
R. M. Silva ◽  
J. G. Carvalho Neto ◽  
S. M. G. L. Montenegro ◽  
C. A. G. Santos ◽  
...  

Abstract. This study assesses the impact of the land use and climate changes between 1967–2008 on the streamflow and sediment yield in Tapacurá River basin (Brazil) using the Soil and Water Assessment Tool (SWAT) model. The model was calibrated and validated by comparing simulated mean monthly streamflow with observed long-term mean monthly streamflow. The obtained R2 and Nash–Sutcliffe efficiency values to streamflow data were respectively 0.82 and 0.71 for 1967–1974, and 0.84 and 0.82 for 1995–2008. The results show that the land cover and climate change affected the basin hydrology, decreasing the streamflow and sediment yield (227.39 mm and 18.21 t ha−1 yr−1 for 1967–1974 and 182.86 mm and 7.67 t ha−1 yr−1 for 1995–2008). The process changes are arising mainly due to the land cover/use variability, but, mainly due to the decreasing in the rainfall rates during 1995–2008 when compared with the first period analysed, which in turn decreased the streamflow and sediments during the wet seasons and reduced the base flow during the dry seasons.


Author(s):  
Lal Muthuwatta ◽  
Aditya Sood ◽  
Matthew McCartney ◽  
Nishchitha Sandeepana Silva ◽  
Alfred Opere

Abstract. In the Tana River Basin in Kenya, six Regional Circulation Models (RCMs) simulating two Representative Concentration Pathways (RCPs) (i.e., 4.5 and 8.5) were used as input to the Soil and Water Assessment Tool (SWAT) model to determine the possible implications for the hydrology and water resources of the basin. Four hydrological characteristics – water yield, groundwater recharge, base flow and flow regulation – were determined and mapped throughout the basin for three 30-year time periods: 2020–2049, 2040–2069 and 2070–2099. Results were compared with a baseline period, 1983–2011. All four hydrological characteristics show steady increases under both RCPs for the entire basin but with considerable spatial heterogeneity and greater increases under RCP 8.5 than RCP 4.5. The results have important implications for the way water resources in the basin are managed. It is imperative that water managers and policy makers take into account the additional challenges imposed by climate change in operating built infrastructure.


Land ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 291 ◽  
Author(s):  
Meilin Wang ◽  
Yaqi Shao ◽  
Qun’ou Jiang ◽  
Ling Xiao ◽  
Haiming Yan ◽  
...  

Guishui River Basin in northwestern Beijing has ecological significance and will be one of the venues of the upcoming Beijing Winter Olympic Games in 2022. However, accelerating climate change and human disturbance in recent decades has posed an increasing challenge to the sustainable use of water in the basin. This study simulated the runoff of the Guishui River Basin using the Soil and Water Assessment Tool (SWAT) model to reveal the spatio-temporal variations of runoff in the basin and the impacts of climate change and human activities on the runoff changes. The results showed that annual runoff from 2004 to 2018 was relatively small, with an uneven intra-annual runoff distribution. The seasonal trends in runoff showed a decreasing trend in spring and winter while an increasing trend in summer and autumn. There was a first increasing and then decreasing trend of average annual runoff depth from northwest to southeast in the study area. In addition, the contributions of climate change and human activities to changes in runoff of the Guishui River Basin were 60% and 40%, respectively, but with opposite effects. The results can contribute to the rational utilization of water resources in the Guishui River Basin.


2010 ◽  
Vol 62 (4) ◽  
pp. 783-791 ◽  
Author(s):  
Jing Fan ◽  
Fei Tian ◽  
Yonghui Yang ◽  
Shumin Han ◽  
Guoyu Qiu

Runoff in North China has been dramatically declining in recent decades. Although climate change and human activity have been recognized as the primary driving factors, the magnitude of impact of each of the above factors on runoff decline is still not entirely clear. In this study, Mian River Basin (a watershed that is heavily influenced by human activity) was used as a proxy to quantify the contributions of human and climate to runoff decline in North China. SWAT (Soil and Water Assessment Tool) model was used to isolate the possible impacts of man and climate. SWAT simulations suggest that while climate change accounts for only 23.89% of total decline in mean annual runoff, human activity accounts for the larger 76.11% in the basin. The gap between the simulated and measured runoff has been widening since 1978, which can only be explained in terms of increasing human activity in the region. Furthermore, comparisons of similar annual precipitation in 3 dry-years and 3 wet-years representing hydrological processes in the 1970s, 1980s, and 1990s were used to isolate the magnitude of runoff decline under similar annual precipitations. The results clearly show that human activity, rather than climate, is the main driving factor of runoff decline in the basin.


2022 ◽  
pp. 817-839
Author(s):  
Panagiota G. Koukouli ◽  
Pantazis E. Georgiou ◽  
Dimitrios K. Karpouzos

In this work, the impacts of climate change on the water resources of the Olynthios River Basin in Northern Greece, were assessed. For this purpose, the climate change scenarios SRES and RCPs were used (SRES A1B, Α2 and RCP4.5, 8.5) - which were taken from two climate models, CGCM3.1/T63 and CanESM2, respectively - for two time periods (2031-2050 and 2081-2100) and for the baseline period (1981-2000). The downscaling was performed using the weather generator ClimGen. The monthly water balance of the Olynthios River Basin was estimated with the use of a conceptual water balance model. Results showed that the annual runoff of the river basin of Olynthios will decrease in response to climate change under all scenarios for both time periods. The results highlight the necessity for adequate adaptation strategies which could improve agricultural water management and reduce the impacts of climate change on agriculture.


2016 ◽  
Vol 20 (4) ◽  
pp. 1331-1353 ◽  
Author(s):  
Amir K. Basheer ◽  
Haishen Lu ◽  
Abubaker Omer ◽  
Abubaker B. Ali ◽  
Abdeldime M. S. Abdelgader

Abstract. The fate of seasonal river ecosystem habitats under climate change essentially depends on the changes in annual recharge of the river, which are related to alterations in precipitation and evaporation over the river basin. Therefore, the change in climate conditions is expected to significantly affect hydrological and ecological components, particularly in fragmented ecosystems. This study aims to assess the impacts of climate change on the streamflow in the Dinder River basin (DRB) and to infer its relative possible effects on the Dinder National Park (DNP) ecosystem habitats in Sudan. Four global circulation models (GCMs) from Coupled Model Intercomparison Project Phase 5 and two statistical downscaling approaches combined with a hydrological model (SWAT – the Soil and Water Assessment Tool) were used to project the climate change conditions over the study periods 2020s, 2050s, and 2080s. The results indicated that the climate over the DRB will become warmer and wetter under most scenarios. The projected precipitation variability mainly depends on the selected GCM and downscaling approach. Moreover, the projected streamflow is quite sensitive to rainfall and temperature variation, and will likely increase in this century. In contrast to drought periods during the 1960s, 1970s, and 1980s, the predicted climate change is likely to affect ecosystems in DNP positively and promote the ecological restoration for the habitats of flora and fauna.


Sign in / Sign up

Export Citation Format

Share Document