scholarly journals Experimental Assessment of Corrugated Rectangular Actuators on Supersonic Jet Mixing

Actuators ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 88
Author(s):  
Thillaikumar T. ◽  
Tamal Jana ◽  
Mrinal Kaushik

To improve the stealth capability of a military aircraft, the reduction in core length is essential to reduce the heat signature and the noise characteristics of the engine exhaust. The efficacy of rectangular vortex generators in achieving these objectives has been demonstrated by several researchers, owing to their simplicity. One way of producing the mixed-size vortices is by providing corrugations on the edge of the tab (actuator). Therefore, in the current study, two tabs of aspect ratio 1.5, mounted diametrically opposite to each other at the outlet of a Mach 1.73 circular nozzle, are examined at varying levels of expansions, ranging from overexpanded to underexpanded jet states. In addition, to generate the mixed-size vortices, three corrugation geometries, i.e., rectangular, triangular, and semicircular, are configured along the tab edges. Both quantitative and qualitative investigations are carried out by using the pitot probe to measure the stagnation pressures and by utilizing a shadowgraph technique to visualize the flow field. The corrugated tabs generated a significant mixing, and among them, the tabs with triangular corrugations are found to be most effective. A maximum reduction of about 99.7% in the supersonic core is obtained with triangular corrugated tabs at near-correct-expansion, corresponding to nozzle pressure ratio (NPR) 5. Interestingly, the semicircular corrugated tab significantly reduces the asymmetry near the nozzle exit plane. The shadowgraph images confirm the efficacy of different corrugated tabs in reducing the strength of the waves, prevalent in the supersonic core.


Author(s):  
Mrinal Kaushik ◽  
E. Rathakrishnan

AbstractThe efficacy of introducing mixing promoting small-scale vortices by two rectangular tabs, of aspect ratio 1.0, 1.5 and 2.0, placed at diametrically opposite locations at the exit of a Mach 1.73 convergent–divergent circular nozzle has been experimentally investigated, for NPRs from 4 to 8, covering overexpanded, correctly expanded and underexpanded states of the jet. The area blockage due to the each tab was 2.5% of the nozzle exit area. Keeping the blockage constant, the aspect ratio (defined as the ratio of length to width of the tab) was varied. A maximum core length reduction of 84.6% was caused by the tabs of aspect ratio 1.0, at underexpanded conditions corresponding to NPR (nozzle pressure ratio) 6. At this NPR, tabs of aspect ratio 1.5 and 2.0 caused core length reduction of 76.9% and 61.5%, respectively. The mixing promoting efficiency of aspect ratio 1.0 is found to be better than 1.5 and 2.0, at all NPRs of the present study, except NPR 5. The shadowgraph pictures of the uncontrolled and controlled jets clearly demonstrate the effectiveness of the tabs in weakening the waves in the jet core.



2019 ◽  
Vol 0 (0) ◽  
Author(s):  
G. Ezhilmaran ◽  
Suresh Chandra Khandai ◽  
Yogesh Kumar Sinha ◽  
S. Thanigaiarasu

Abstract This paper presents the numerical simulation of Mach 1.5 supersonic jet with perforated tabs. The jet with straight perforation tab was compared with jets having slanted perforated tabs of different diameters. The perforation angles were kept as 0° and 10° with respect to the axis of the nozzle. The blockage areas of the tabs were 4.9 %, 4.9 % and 2.4 % for straight perforation, 10° slanted perforation ( {{{\Phi }}_{\ }} = 1.3 mm) and 10° slanted perforation ( {{{\Phi }}_{\ }} = 1.65 mm) respectively. The 3-D numerical simulations were carried out using the software. The mixing enhancements caused by these tabs were studied in the presence of adverse and favourable pressure gradients, corresponding to nozzle pressure ratio (NPR) of 3, 3.7 and 5. For Mach number 1.5 jet, NPR 3 corresponds to 18.92 % adverse pressure gradients and NPR 5 corresponds to 35.13 % favourable pressure gradients. The centerline Mach number of the jet with slanted perforations is found to decay at a faster rate than uncontrolled nozzle and jet with straight perforation tab. Mach number plots were obtained at both near-field and far field downstream locations. There is 25 % and 65 % reduction in jet core length were observed for the 0° and 10° perforated tabs respectively in comparison to uncontrolled jet.



Author(s):  
S. Parameshwari ◽  
Pradeep Kumar ◽  
S. Thanigaiarasu ◽  
E. Rathakrishnan

The knowledge of jet mixing and its enhancement of elliptic jet are important in a propulsion system of aircraft, rocket, and missile’s system design for advancement of combustion via fuel-air mixture increment, lowering the jet noise and reduction of the plume infrared (IR) signature. The jet issuing from a twin elliptic orifice is non-uniform in shape that promotes the faster mixing and it influences by orifice exit conditions, so knowledge of absence of boundary layer and jet mixing characteristics is important. Hence, an experimental work helps to study the jet mixing for a twin elliptic orifice of aspect ratio two at nozzle pressure ratios of one, two, and three. The proximity between the orifices kept as one to 3mm in steps of one. The experimental readings were taken using pitot probe. The results revealed that jet mixing is faster and effective when the proximity between the orifices is closer to each other than the faraway distances at measured nozzle pressure ratios. Difference in orifice jet core exerted a noticeable influence at high proximity levels of nozzle pressure ratio of three and four for elliptic orifice.



Author(s):  
T. Berrueta ◽  
E. Rathakrishnan

AbstractAerodynamic mixing of subsonic and sonic jets with limiting tabs, with and without corrugations, has been studied experimentally. Limiting tab located at the nozzle exit and at a downstream distance of 0.5D has been considered in this study. Mixing caused by the tab at nozzle exit is found to be better that of tab at 0.5D, for both plain and corrugated geometries. Also, both tabs caused better mixing for underexpanded sonic jets than the correctly expanded sonic jet and subsonic jets. At nozzle pressure ratio 3 the plain tab at the nozzle exit reduced the core by about 56 % and the corrugated tab by about 51 %. But when the plain tab is placed at 0.5D the jet mixing is retarded. However, the corrugated tab at 0.5D enhances the mixing, though not up to the level of the same tab at 0D, at all Mach numbers except 0.6. The maximum reduction of core caused by shifted corrugated tab is 14 % for Mach 0.8 jet.



2014 ◽  
Vol 118 (1209) ◽  
pp. 1245-1278 ◽  
Author(s):  
Arun Kumar P. ◽  
E. Rathakrishnan

AbstractThe mixing promoting capability of right-angled triangular tab with sharp and truncated vertex has been investigated by placing two identical tabs at the exit of a Mach 2 axi-symmetric nozzle. The mixing promoting efficiency of these tabs have been quantified in the presence of adverse and marginally favourable pressure gradients at the nozzle exit. It was found that, at all levels of expansion of the present study though the core length reduction caused by both the tabs are appreciable, but the mixing caused by the truncated tab is superior. The mixing promoting efficiency of the truncated tab is found to increase with increase of nozzle pressure ratio (that is, decrease of adverse pressure gradient). For all the nozzle pressure ratios of the present study, the core length reduction caused by the truncated vertex tab is more than that of sharp vertex tab. As high as 84% reduction in core length is achieved with truncated vertex right-angled triangular tabs at moderately overexpanded level, corresponding to expansion levelpe/pa= 0·90. The corresponding core length reduction for right-angled triangular tabs with sharp vertex and rectangular tabs are 65% and 31%, respectively. The present results clearly show that the mixing promoting capability of the triangular tab is best than that of rectangular tabs at identical blockage and flow conditions.



Actuators ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 72 ◽  
Author(s):  
Abhash Ranjan ◽  
Mrinal Kaushik ◽  
Dipankar Deb ◽  
Vlad Muresan ◽  
Mihaela Unguresan

This work explores the extent of jet mixing for a supersonic jet coming out of a Mach 1.8 convergent-divergent nozzle, controlled with two short rectangular vortex-generating actuators located diametrically opposite to each other with an emphasis on numerical methodology. The blockage ratio offered by the tabs is around 0.05. The numerical investigations were carried out by using a commercial computational fluid dynamics (CFD) package and all the simulations were performed by employing steady Reynolds-averaged Navier–Stokes equations and shear-stress transport k−ω turbulence model on a three-dimensional computational space for more accuracy. The numerical calculations are administered at nozzle pressure ratios (NPRs) of 4, 5, 6, 7 and 8, covering the overexpanded, the correctly expanded and the underexpanded conditions. The centerline pressure decay and the pressure profiles are plotted for both uncontrolled and the controlled jets. Numerical schlieren images are used to capture the barrel shock, the expansion fans and the Mach waves present in the flow field. Mach contours are also delineated at varying NPRs indicating the number of shock cells, their length and the variation of the shock cell structure and strength, to substantiate the prominent findings. The outcomes of this research are observed to be in sensible concurrence with the demonstrated exploratory findings. A reduction in the jet core length of 75% is attained with small vortex-generating actuators, compared to an uncontrolled jet, corresponding to nozzle pressure ratio 5. It was also seen that the controlled jet gets bifurcated downstream of the nozzle exit at a distance of about 5 D, where D is the nozzle exit diameter. Furthermore, it was fascinating to observe that the jet spread increases downstream of the nozzle exit for the controlled jet, as compared to the uncontrolled jet at any given NPR.



Author(s):  
S. Manigandan ◽  
K. Vijayaraja

Abstract The acoustic and flow characteristics of a jet with elliptical throat is studied at different levels of nozzle expansion ratio. In this study, we have taken two types of CD nozzle configuration (circular and elliptical throat) and it is studied for various NPR ratios of 2, 3, 4 and 6. In addition, the acoustic characteristic of the jet flow is also measured for respective NPRs. Measurements of acoustic data are done using microphones placed at 30, 60 and 90 degrees to imprison the effects of screech tone. At NPR 2, 3 and 4, the jet with elliptical throat witnesses superior mixing and shorter core length compared to the circular throat. Its surprising to see both the configurations provides the identical oscillation at NPR 2, 3 and 4, however the efficiency of jet mixing is larger in elliptical throat jet. As the nozzle pressure ratio increased from 2 to 3 and 3 to 4, the potential core length of the jet reduces marginally about 5 to 10 % for every NPR until nozzle pressure ratio of 5. At NPR 2 and 3, the centerline pitot pressure profile shows, the decay of jet from the elliptical throat is healthier than a circular jet. At various levels of nozzle expansion, shock cell shows an appreciable change with an increase in NPR. Introduction of the elliptical throat on circular modifies the structure of shock cell which significantly changes the magnitude of screech tone due to the weakening of shock waves.



2018 ◽  
Vol 0 (0) ◽  
Author(s):  
G. Ezhilmaran ◽  
Suresh Chandra Khandai ◽  
S. Pavithrabalan ◽  
K. Udhayakumar

Abstract Control of Mach 1.8 circular jet with slanted perforated tabs is studied experimentally. Two sets of perforated tabs were used for this study. The perforation angles were 0° and 30° with respect to axis of the nozzle. The blockage areas of the tabs were 5 %. The mixing enhancements caused by these tabs were studied in the presence of adverse and favorable pressure gradients, corresponding to nozzle pressure ratio (NPR) of 4, 5.74 and 8. For Mach number 1.8, jet NPR 4 corresponds to 30 % adverse pressure gradients and NPR 8 corresponds to 39.37 % favorable pressure gradients. The pressure decay characteristics and shadowgraph images of perforated tabs at different NPR were compared. There is 45 % and 65 % reduction in jet core length were observed for the 0° and 30° perforated tabs respectively in both pitot and shadowgraph experiments in comparison to uncontrolled jet.



Author(s):  
De Satyajit ◽  
Ethirajan Rathakrishnan

A detailed experimental study was carried out to investigate the behaviour of a Mach 2 primary jet in the presence of a Mach 1.6 annular co-flow. The lip thickness of the inner nozzle was 7.75 mm. The characteristics of jets were investigated at nozzle pressure ratios 3 to 8, in steps of 1. At nozzle pressure ratios 3 to 7, the centre jet is overexpanded; and at nozzle pressure ratio 8, it is marginally underexpanded. Both primary and secondary jets were operated at the nozzle pressure ratio. Centreline pressure distribution was measured to examine the supersonic core length of the centre jet in the presence and absence of the co-flow at all nozzle pressure ratios. It is found that the co-flow reduces the core length of the primary jet at all overexpanded states. A maximum core length reduction of about 61% is at nozzle pressure ratio 4, whereas the core increases by 5% at the marginally underexpanded state corresponding to nozzle pressure ratio 8. The co-flow jet merges with the primary jet at 4 D, at nozzle pressure ratio 3, and at 8 D for nozzle pressure ratios above 4. Shadowgraph images of the jet in the presence and absence of co-flow reveal that the waves in the core of the jet are strongly influenced by the co-flow.



Sign in / Sign up

Export Citation Format

Share Document