scholarly journals Evaluation of efficacy of modern fungicides against fusarium head blight on winter wheat

Author(s):  
M. Dzham

Goal. To study the influence of modern biological and chemical preparations on the development of fungi of the genus Fusariumunder conditions of artificial inoculation. Methods. The efficacy of fungicides was studied in 2018—2019 in the Zhytomyr region, Pulinsky district under the conditions of artificial inoculation on winter wheat of the Bogdan variety. Mixture of conidia of the fusarium fungi (F. graminearum, F. culmorum, F. poae, F. avenaceum) was used for ear inoculation. The plot area was 2 m2 in four replications, the plot placement was randomized. The inoculation of winter wheat ears was carried out at the phase of mass flowering. At the phase of milky-wax maturity, records were taken to determine the spread and development of the disease. The following fungicides were used to protect wheat crops: Folicur BT EC, 1.2 l/ha, Magnello 350 EC, 1.0 l/ ha, Haupsin, 0.2 l/ha, Fitodoktor, 0.05 kg/ha, Alliot 250 EC, 0.5 l/ ha, Bumper Super EC, 1.2 l/ha and mixtures of Magnello 350 EC, 0.75 l/ha + Haupsin 0.2 l/ha, Magnello350 EC, 0.75 l/ha + Fitodoktor, 0.05 kg/ha. Results. The results obtained during the years of investigationsindicate that the used preparations are efficient for the protection of crops from fusarium head blight on winter wheat. However,not all fungicides tested had high enough efficacy. The most effective against the pathogens F.graminearum, F. culmorum, F. poae, F. avenaceumunder conditions of Zhytomyr region were fungicides Folicur BT EC, 1.2 l/ha, Magnello 350 EC, 1.0 l/ha and mixtures of fungicide and biological preparation (Magnello 350 EC, 0.75 l/ ha + Haupsin, 0.2 l/ha). Efficacy of fungicides used against these pathogens ranged from 69.2% to 75.2%. After fungicide application the weight of 1000 grains increased by 7.3—13.6 g. Significant difference between experimental variants and untreated check on 1000 grain weight was noted. With the use of fungicides, the yield increased by 22.3—24.8%. Conclusions. The analysis of the protection against fusarium head blight convinces the need to apply chemical protection measures when weather conditions are favorable for the development of the disease. In the growing seasons of 2018—2019, under conditions of the Zhytomyr region, the most promising and effective against the pathogens F.graminearum, F. culmorum, F. poae, F. avenaceum were fungicides Folicur BT EC, 1.2 l/ha, Magnello 350 EC, 1.0 l/ ha and mixtures of fungicide and biological preparation Magnello 350 EC, 0.75 l/ ha + Haupsin, 0.2 l/ha.

Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1387-1397 ◽  
Author(s):  
D. L. D'Angelo ◽  
C. A. Bradley ◽  
K. A. Ames ◽  
K. T. Willyerd ◽  
L. V. Madden ◽  
...  

Seven field experiments were conducted in Ohio and Illinois between 2011 and 2013 to evaluate postanthesis applications of prothioconazole + tebuconazole and metconazole for Fusarium head blight and deoxynivalenol (DON) control in soft red winter wheat. Treatments consisted of an untreated check and fungicide applications made at early anthesis (A), 2 (A+2), 4 (A+4), 5 (A+5), or 6 (A+6) days after anthesis. Six of the seven experiments were augmented with artificial Fusarium graminearum inoculum, and the other was naturally infected. FHB index (IND), Fusarium damaged kernels (FDK), and DON concentration of grain were quantified. All application timings led to significantly lower mean arcsine-square-root-transformed IND and FDK (arcIND and arcFDK) and log-transformed (logDON) than in the untreated check; however, arcIND, arcFDK, and logDON for the postanthesis applications were generally not significantly different from those for the anthesis applications. Relative to the check, A+2 resulted in the highest percent control for both IND and DON, 69 and 54%, respectively, followed by A+4 (62 and 52%), A+6 (62 and 48%), and A (56 and 50%). A+2 and A+6 significantly reduced IND by 30 and 14%, respectively, relative to the anthesis application. Postanthesis applications did not, however, reduce DON relative to the anthesis application. These results suggest that applications made up to 6 days following anthesis may be just as effective as, and sometimes more effective than, anthesis applications at reducing FHB and DON.


2008 ◽  
Vol 98 (9) ◽  
pp. 999-1011 ◽  
Author(s):  
P. A. Paul ◽  
P. E. Lipps ◽  
D. E. Hershman ◽  
M. P. McMullen ◽  
M. A. Draper ◽  
...  

The effects of propiconazole, prothioconazole, tebuconazole, metconazole, and prothioconazole+tebuconazole (as a tank mix or a formulated premix) on the control of Fusarium head blight index (IND; field or plot-level disease severity) and deoxynivalenol (DON) in wheat were determined. A multivariate random-effects meta-analytical model was fitted to the log-transformed treatment means from over 100 uniform fungicide studies across 11 years and 14 states, and the mean log ratio (relative to the untreated check or tebuconazole mean) was determined as the overall effect size for quantifying fungicide efficacy. Mean log ratios were then transformed to estimate mean percent reduction in IND and DON relative to the untreated check (percent control: [Formula: see text]IND and [Formula: see text]DON) and relative to tebuconazole. All fungicides led to a significant reduction in IND and DON (P < 0.001), although there was substantial between-study variability. Prothioconazole+tebuconazole was the most effective fungicide for IND, with a [Formula: see text]IND of 52%, followed by metconazole (50%), prothioconazole (48%), tebuconazole (40%), and propiconazole (32%). For DON, metconazole was the most effective treatment, with a [Formula: see text]DON of 45%; prothioconazole+tebuconazole and prothioconazole showed similar efficacy, with [Formula: see text]DON values of 42 and 43%, respectively; tebuconazole and propiconazole were the least effective, with [Formula: see text]DON values of 23 and 12%, respectively. All fungicides, with the exception of propiconazole, were significantly more effective than tebuconazole for control of both IND and DON (P < 0.001). Relative to tebuconazole, prothioconazole, metconazole, and tebuconzole+prothioconzole reduced disease index a further 14 to 20% and DON a further 25 to 29%. In general, fungicide efficacy was significantly higher for spring wheat than for soft winter wheat studies; depending on the fungicide, the difference in percent control between spring and soft winter wheat was 5 to 20% for [Formula: see text]IND and 7 to 16% for [Formula: see text]DON. Based on the mean log ratios and between-study variances, the probability that IND or DON in a treated plot from a randomly selected study was lower than that in the check by a fixed margin was determined, which confirmed the superior efficacy of prothioconazole, metconazole, and tebuconzole+prothioconzole for Fusarium head blight disease and toxin control.


2007 ◽  
Vol 97 (2) ◽  
pp. 211-220 ◽  
Author(s):  
P. A. Paul ◽  
P. E. Lipps ◽  
D. E. Hershman ◽  
M. P. McMullen ◽  
M. A. Draper ◽  
...  

A meta-analysis of the effect of tebuconazole (e.g., Folicur 3.6F) on Fusarium head blight and deoxynivalenol (DON) content of wheat grain was performed using data collected from uniform fungicide trials (UFTs) conducted at multiple locations across U.S. wheat-growing regions. Response ratios (mean disease and DON levels from tebuconazole-treated plots, divided by mean disease and DON levels from untreated check plots) were calculated for each of 139 studies for tebuconazole effect on Fusarium head blight index (IND; field or plot-level disease severity, i.e., mean proportion of diseased spikelets per spike) and 101 studies for tebuconazole effect on DON contamination of harvested grain. A random-effects meta-analysis was performed on the log-transformed ratios, and the estimated mean log ratios were transformed to estimate the mean (expected) percent control for IND ( CIND ) and DON ( CDON). A mixed effects meta-analysis was then done to determine the effects of wheat type (spring versus winter wheat) and disease and DON levels in the controls on the log ratios. Tebuconazole was more effective at limiting IND than DON, with CIND and CDON values of 40.3 and 21.6%, respectively. The efficacy of tebuconazole as determined by the impact on both IND and DON was greater in spring wheat than in winter wheat (P < 0.01), with a 13.2% higher CIND and a 12.4% higher CDON in spring wheat than in winter wheat. In general, CIND and CDON were both at their lowest values (and not significantly different from 0) when mean IND and DON in the controls, respectively, were low (≤2% for IND and <1 ppm for DON). CIND was 25% higher in studies with mean IND between 2 and 15% than in studies with mean IND ≤ 2%, whereas CDON was 28.8% higher in studies with mean DON between 1 and 10 ppm than in studies with mean DON < 1 ppm. The between-study variance was significantly greater than 0 (P < 0.01), indicating considerable (unexplained) variability in percent control.


Plant Disease ◽  
2008 ◽  
Vol 92 (11) ◽  
pp. 1587-1587 ◽  
Author(s):  
F. Giraud ◽  
C. Vrancken ◽  
P. Delfosse ◽  
T. Bohn ◽  
L. Hoffmann ◽  
...  

Following a comparatively mild winter (1.9°C above average [2000–2007]), Fusarium head blight (FHB) on winter wheat was observed during the 2007 season in 17 sites representing all three districts of Diekirch, Grevenmacher, and Luxembourg. The cultivars encountered were diverse and included Achat, Akteur, Aron, Bussard, Cubus, Enorm, Exclusiv, Flair, Rosario, Tommi, and Urban. The preceding crops were maize (six sites), rapeseed (three sites), and one site each of pea, triticale, winter barley, and winter wheat. Rainfalls recorded during the flowering period (June 1–23, mean June 12 for GS 65) ranged from 13 to 62 (mean 38) mm. An overall prevalence of FHB (percentage of infected spikes) of 8.9 ± 15.5% (mean ± SD) and a severity (percentage of infected grains per spike) of 21.0 ± 17.8% were recorded. A significant difference in FHB severity was observed between the cantons north and south of Luxembourg City, 13.4 ± 13.1% (range 0.01 to 46.4) and 35.1 ± 18.1% (range 6.2 to 61.9), respectively (Man-Whitney, P = 0.027), indicating the importance to take regional specificities such as topoclimatological aspects into account. Maize as a preceding crop resulted in significant higher prevalence of FHB as opposed to the other crops (5.9 ± 1.6% versus 3.3 ± 2.2%, Man-Whitney, P = 0.022).


2021 ◽  
Vol 13 (15) ◽  
pp. 3024
Author(s):  
Huiqin Ma ◽  
Wenjiang Huang ◽  
Yingying Dong ◽  
Linyi Liu ◽  
Anting Guo

Fusarium head blight (FHB) is a major winter wheat disease in China. The accurate and timely detection of wheat FHB is vital to scientific field management. By combining three types of spectral features, namely, spectral bands (SBs), vegetation indices (VIs), and wavelet features (WFs), in this study, we explore the potential of using hyperspectral imagery obtained from an unmanned aerial vehicle (UAV), to detect wheat FHB. First, during the wheat filling period, two UAV-based hyperspectral images were acquired. SBs, VIs, and WFs that were sensitive to wheat FHB were extracted and optimized from the two images. Subsequently, a field-scale wheat FHB detection model was formulated, based on the optimal spectral feature combination of SBs, VIs, and WFs (SBs + VIs + WFs), using a support vector machine. Two commonly used data normalization algorithms were utilized before the construction of the model. The single WFs, and the spectral feature combination of optimal SBs and VIs (SBs + VIs), were respectively used to formulate models for comparison and testing. The results showed that the detection model based on the normalized SBs + VIs + WFs, using min–max normalization algorithm, achieved the highest R2 of 0.88 and the lowest RMSE of 2.68% among the three models. Our results suggest that UAV-based hyperspectral imaging technology is promising for the field-scale detection of wheat FHB. Combining traditional SBs and VIs with WFs can improve the detection accuracy of wheat FHB effectively.


2010 ◽  
Vol 100 (2) ◽  
pp. 160-171 ◽  
Author(s):  
P. A. Paul ◽  
M. P. McMullen ◽  
D. E. Hershman ◽  
L. V. Madden

Multivariate random-effects meta-analyses were conducted on 12 years of data from 14 U.S. states to determine the mean yield and test-weight responses of wheat to treatment with propiconazole, prothioconazole, tebuconazole, metconazole, and prothioconazole+tebuconazole. All fungicides led to a significant increase in mean yield and test weight relative to the check (D; P < 0.001). Metconazole resulted in the highest overall yield increase, with a D of 450 kg/ha, followed by prothioconazole+tebuconazole (444.5 kg/ha), prothioconazole (419.1 kg/ha), tebuconazole (272.6 kg/ha), and propiconazole (199.6 kg/ha). Metconazole, prothioconazole+tebuconazole, and prothioconazole also resulted in the highest increases in test weight, with D values of 17.4 to 19.4 kg/m3, respectively. On a relative scale, the best three fungicides resulted in an overall 13.8 to 15.0% increase in yield but only a 2.5 to 2.8% increase in test weight. Except for prothioconazole+tebuconazole, wheat type significantly affected the yield response to treatment; depending on the fungicide, D was 110.0 to 163.7 kg/ha higher in spring than in soft-red winter wheat. Fusarium head blight (FHB) disease index (field or plot-level severity) in the untreated check plots, a measure of the risk of disease development in a study, had a significant effect on the yield response to treatment, in that D increased with increasing FHB index. The probability was estimated that fungicide treatment in a randomly selected study will result in a positive yield increase (p+) and increases of at least 250 and 500 kg/ha (p250 and p500, respectively). For the three most effective fungicide treatments (metconazole, prothioconazole+tebuconazole, and prothioconazole) at the higher selected FHB index, p+ was very large (e.g., ≥0.99 for both wheat types) but p500 was considerably lower (e.g., 0.78 to 0.92 for spring and 0.54 to 0.68 for soft-red winter wheat); at the lower FHB index, p500 for the same three fungicides was 0.34 to 0.36 for spring and only 0.09 to 0.23 for soft-red winter wheat.


2008 ◽  
Vol 88 (6) ◽  
pp. 1087-1089 ◽  
Author(s):  
Stephen N Wegulo ◽  
Floyd E Dowell

Fusarium head blight (scab) of wheat, caused by Fusarium graminearum, often results in shriveled and/or discolored kernels, which are referred to as Fusarium-damaged kernels (FDK). FDK is a major grain grading factor and therefore is routinely determined for purposes of quality assurance. Measurement of FDK is usually done visually. Visual sorting can be laborious and is subject to inconsistencies resulting from variability in intra-rater repeatability and/or inter-rater reliability. The ability of a single-kernel near-infrared (SKNIR) system to detect FDK was evaluated by comparing FDK sorted by the system to FDK sorted visually. Visual sorting was strongly correlated with sorting by the SKNIR system (0.89 ≤ r ≤ 0.91); however, the SKNIR system had a wider range of FDK detection and was more consistent. Compared with the SKNIR system, visual raters overestimated FDK in samples with a low percentage of Fusarium-damaged grain and underestimated FDK in samples with a high percentage of Fusarium-damaged grain. Key words: Wheat, Fusarium head blight, Fusarium-damaged kernels, single-kernel near-infrared


2002 ◽  
Vol 106 (6) ◽  
pp. 961-970 ◽  
Author(s):  
L. Gervais ◽  
F. Dedryver ◽  
J.-Y. Morlais ◽  
V. Bodusseau ◽  
S. Negre ◽  
...  

2012 ◽  
Vol 133 (4) ◽  
pp. 975-993 ◽  
Author(s):  
Alissa B. Kriss ◽  
Pierce A. Paul ◽  
Xiangming Xu ◽  
Paul Nicholson ◽  
Fiona M. Doohan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document