scholarly journals Design of Inverter Voltage Mode Controller by Backstepping Technique for Nonlinear Power System Model

Author(s):  
P. Karuppusamy

Modelling systems are a new sort of electrical network that can be easily adapted. Dispersed generators are linked to a microgrid using voltage source inverters. Nonlinear modelling systems are used in this study to create an inverter voltage mode controller for power systems to control power supply volatility. Controller for a nonlinear inverter that operates in voltage control mode is proposed. The primary goal is to ensure that the output voltage of the system matches a predetermined standard. Once the system model is completed, the controller is constructed using the backstepping method. After the control law is developed, several simulations are run to test the proposed controller's performance. According to simulation findings and formal analysis, the output voltage matches the reference voltage with global asymptotic stability. The accomplishment of this work is that the controller built, works in both grid-connected and inverter voltage modes of microgrid operation.

2021 ◽  
Vol 2 (2) ◽  
pp. 44-53
Author(s):  
GENNADY S. MYTSYK ◽  
◽  
ZAW HTET HEIN ◽  

The recent interest of developers of new technology in studying a structural and algorithmic synthesis (SAS) of voltage source inverters (VSI) for solar power plants (SPP) is stemming from a growing need to solve problems in connection with the revealed new possibilities of converting energy flow (from DC to AC) with better energy efficiency by reducing the depth of its pulse modulation. This problem is solved by using more rational structural and algorithmic solutions. It is shown that for SPPs for a capacity of about 1 MW and more, it is more expedient to construct inverters based on the energy flow multichannel conversion principle. Given a limited power capacity of the transistor components, the application of this principle allows the problem to be solved in fact without using an output filter. The output voltage waveform is shaped using the energy flow pulse-amplitude modulation (PAM), and its M parts are summed in the output circuit by out using M winding transfilters (M-TF). The proposed method for carrying out combined SAS of single-phase voltage source inverters with multichannel conversion is considered, which consists in using an N-level single-phase VSI (N-SPVSI) in each of the M channels with the voltage levels optimized in terms of the minimum total harmonic distortion (THD). The resulting voltage of this class of single-phase inverters, designated as MxN-SPVSI, is formed by the corresponding phase shift of the channel voltages followed by summing the channel currents by M-TF. It is shown that the resulting output voltage levels are also close to their values optimized with respect to the minimum of the THD indicator. The results from a comparative analysis of two options — a single-channel 8-level inverter and a four-channel 8-level inverter are given. For the second option, only one intermediate voltage tap in the solar battery is required (instead of seven taps in the first option) along with modern transistor components that are available for practical implementation. In both options, the THD value less than 5% is obtained with almost no need of using an output filter. The presented results provide a certain information and methodological support for system designing of single-phase voltage source inverters as applied to the specific features of solar power plants. Three-phase inverters can be built on the basis of three single-phase inverters with galvanic isolation of the power sources for each phase.


2013 ◽  
Vol 387 ◽  
pp. 254-257
Author(s):  
Qun Feng Zhu ◽  
Lei Huang ◽  
Deng Xiang Yang ◽  
Guang Yao Zhu

A type of direct current controlled static reactive power compensator (DSTATCOM) used for improvement of voltage quality in low-medium distribution network is introduced. The main circuit of DSTATCOM consists of VSI-SPWM voltage source inverter. The extraction of reference current and the tracking control of compensator current are realized in synchronous reference frame. The function of DSTATCOM to mitigate voltage sag and flicker is presented in this paper and the control mode of DSTATCOM is discussed in detail. The function of DSTATCOM to mitigate voltage sag and flicker under different control mode is simulated with MATLAB. The simulation results shows that the current control mode is suitable for mitigating voltage flicker and the voltage control mode is suitable for mitigating voltage sag.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 18
Author(s):  
B Vijaya Krishna ◽  
B Venkata Prashanth ◽  
P Sujatha

In current days, the power quality issues in the interconnected power system are mainly happens due to the demand of electricity and utilization of large non-linear loads as well as inductive/capacitive loads. The power quality cries are voltage sag and swell in multi-bus power system (MBPS). In this article studies on a two bus, three bus and five bus power systems using DPFC. In order to eliminate the voltage sag and swell in the MBPS, a distributed power flow controller (DPFC) is designed. The structure of the DPFC consists of three-phase shunt converter and three single series phase converters. Both these converters are arranged in back-back voltage source inverters (VSIs). These converters are controlled with help of the pulse width modulation (PWM) scheme. The feedback controllers and reference signals are derived the PWM for DPFC to magnify the power quality problems in MBPS. The performance of the model is investigated at different loads by making of MATLAB/Simulink model. The simulation results are presented.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1373 ◽  
Author(s):  
Panos C. Papageorgiou ◽  
Konstantinos F. Krommydas ◽  
Antonio T. Alexandridis

The integration of distributed energy resources (DERs) in modern power systems has substantially changed the local control capabilities of the grid since the majority of DERs are connected through a controlled dc/ac inverter interface. Such long-distance located DER installations, usually represented by current regulated dc sources, can inject large amounts of power into the main ac grid at points where the strength of the ac connection is low. The efficient and stable performance of such a power scheme is related to the capability of the control applied to retain the power extraction close to the maximum and simultaneously to regulate the dc-side voltage as well as the ac-side voltage magnitude at the weak ac connection point. This is implemented by designing the controllers of the voltage source inverters (VSIs) in a manner that reliably satisfies the above tasks. To this end, decentralized cascaded control schemes, driven by novel, locally implemented phase locked loops (PLLs), suitable to work in weak ac connections, are proposed for the VSI performance regulation by using new fast inner-loop proportional-integral (PI) current controllers. A decisive innovation is proposed by inserting an extra damping term in the inner-loop controllers to guarantee stability and convergence to the desired equilibrium. This is analytically proven by a rigorous analysis based on the entire nonlinear system model, where advanced Lyapunov-based methods are deployed in detail. As a good transient response of the VSI interface is indeed critical for the energy and grid system management, the conducted simulation and experimental results confirm that the proposed scheme efficiently supports the ac- and dc-side voltages of the VSI under different varying conditions in the power production or any voltage changes of the main grid.


2013 ◽  
Vol 732-733 ◽  
pp. 1247-1250
Author(s):  
Zhi Lei Yao ◽  
Jia Rong Kan ◽  
Guo Wen Hu

The grid-connected inverters required for distributed generation systems should have high reliability. However, a shoot-through problem, which is a major killer of the reliability of the inverters, exists in the conventional bridge-type voltage-source inverters. In order to solve the aforementioned problem, a non-isolated buck-boost grid-connected inverter with no shoot-through problem is proposed. The hysteresis current control is used. The output voltage of the proposed grid-connected inverter can be larger or lower than the input voltage. The operating principle is illustrated. Simulation verifies the theoretical analysis.


2021 ◽  
Vol 11 (13) ◽  
pp. 5847
Author(s):  
Xinglong Wu ◽  
Zheng Xu ◽  
Zheren Zhang

This paper analyzes the power stability of the hybrid dual-infeed high-voltage direct-current (HVDC) system containing a line commutated converter-based HVDC (LCC-HVDC) and a voltage source converter-based HVDC (VSC-HVDC). First, the concept and the calculation method of power stability for the hybrid dual-infeed HVDC system are introduced. Second, the influence of VSC-HVDC on the power stability of the system is investigated. Third, the relationship between the power stability and the effective short circuit ratio (ESCR) is discussed under different system parameters. Then, the value range of the critical effective short circuit ratio is determined. Finally, the evaluation criteria of power stability are proposed. The results show that the evaluation criteria of the single-infeed LCC-HVDC system can still be used, if the VSC-HVDC is in constant AC voltage control mode; if the VSC-HVDC is in constant reactive power control mode, the hybrid dual-infeed HVDC system cannot operate stably when the ESCR is less than 2.0 and can operate stably with high power stability margin when the ESCR is greater than 3.0. The ESCR index can still be used to measure the power stability of the hybrid dual-infeed HVDC system.


Sign in / Sign up

Export Citation Format

Share Document