scholarly journals Comparative Studies of Intra and Inter Specific Hybrid of F2 Generations in Mungbean

2020 ◽  
pp. 01-11
Author(s):  
Pandiyan M ◽  
Krishnaveni A ◽  
Sivakumar P ◽  
Vaithiyalingan M ◽  
Jamuna E ◽  
...  

Intra and interspecific hybridization was done for developing donor with respect to MYMV and Bruchids resistance. Several differences in many characters were observed in intra and interspecific hybrids crosses for certain characters. Among all the combination of both intra and interspecific crosses studied, single plant yield increased through only intra specific crosses attempted while resistance to biotic stresses like MYMV and bruchids were improved by interspecific crosses. Hence the utilization of wild species in crop improvement is very effective for donor development compared to intra specific crosses. Keywords: Vigna radiata; Wild Vigna species Intra and Interspecific; Hybridization; Comparative Traits

1988 ◽  
Vol 110 (3) ◽  
pp. 471-474
Author(s):  
T. E. Yassin

SummaryCrosses between two cultivars of tomato (Lycopersicon esculentum Mill.), and two accessions of the wild species L. pimpinellifolium (Jusl.) Mill, were made and F1, F2 and backcross generations were developed and studied. Significant differences in number of fruits per plant, yield per plant and fruit weight were found between means of the different generations. Variation in number of fruits per plant and yield was also found between plants within generations. Number of fruits per plant was a highly heritable character (average h2 = 73·6%) and closely correlated with yield per plant, indicating that it may be a suitable selection criterion for yield improvement in tomato crosses.


2012 ◽  
pp. 10-21
Author(s):  
M. I. Mamedov ◽  
O. N. Pishnaya ◽  
N. A. Shmykova ◽  
V. A. Verba ◽  
E. A. Jos ◽  
...  

The studies found that in the crosses of S. melongena with wild species, used as a male and female component, the interspecific hybrids have the traits of the generative organs of wild species: the shape and flower size, color, shape and fruit size.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 564
Author(s):  
Gaetano Distefano

The main challenges for tree crop improvement are linked to the sustainable development of agro-ecological habitats, improving the adaptability to limiting environmental factors and resistance to biotic stresses or promoting novel genotypes with improved agronomic traits [...]


Author(s):  
Dongying Gao ◽  
Ana C. G. Araujo ◽  
Eliza F. M. B. Nascimento ◽  
M. Carolina Chavarro ◽  
Han Xia ◽  
...  

AbstractIntrogression of desirable traits from wild relatives plays an important role in crop improvement, as wild species have important characters such as high resistance to pests and pathogens. However, use of wild peanut relatives is challenging because almost all wild species are diploid and sexually incompatible with cultivated peanut, which is tetraploid (AABB genome type; 2n = 4x = 40). To overcome the ploidy barrier, we used 2 wild species to make a tetraploid with the same allotetraploid genome composition as cultivated peanut. Crosses were made between 2 diploid wild species, Arachis valida Krapov. and W.C. Greg. (BB genome; 2n = 2x = 20) and Arachis stenosperma Krapov. and W.C. Greg. (AA genome; 2n = 2x = 20). Cuttings from the diploid F1 AB hybrid were treated with colchicine to induce chromosome doubling thus generating an induced allotetraploid. Chromosome counts confirmed polyploidy (AABB genome; 2n = 4x = 40). We named the new allotetraploid ValSten. Plants had well-developed fertile pollen, produced abundant seed and were sexually compatible with cultivated peanut. ValSten exhibits the same high resistance to early and late leaf spot and rust as its diploid parents. Notably, we observed morphological variations, including flower width and branch angles in the earliest generation (S0) of allotetraploids. A SNP array was used to genotype 47 S0 allotetraploids. The great majority of markers showed the additive allelic state from both parents (AABB). However, some loci were AAAA or BBBB, indicating homeologous recombination. ValSten provides a new, vigorous, highly fertile, disease resistant germplasm for peanut research and improvement.


2007 ◽  
Vol 43 (4) ◽  
pp. 455-462 ◽  
Author(s):  
G. LOCKWOOD ◽  
F. OWUSU-ANSAH ◽  
Y. ADU-AMPOMAH

Broad sense heritabilities were estimated in three long-term cocoa clone trials in Ghana, with 20, 18 and 15 entries. They were 0.15, 0.05 and 0.15 for yield in pods per plant, and 0.26, 0.19 and 0.40 for incidence of ‘bad’ pods, mostly due to black pod disease, caused by infection with Phytophthora spp. The low heritability of single plant yield, which has been known for 80 years, has been widely overlooked in cocoa research and extension, compromising the success of clone selection programmes. The heritability of the incidence of black pod disease is high enough to justify mass selection where family level data are not available. The findings will be applied in a new large-scale programme in Ghana to select clones that are high yielding in the presence of P. megakarya.


1958 ◽  
Vol 36 (3) ◽  
pp. 411-420 ◽  
Author(s):  
H. Baenziger ◽  
J. E. R. Greenshields

In crosses involving derivatives of interspecific crosses of (Melilotus alba × Melilotus dentata) and (M. officinalis × M. alba) with pure Melilotus alba, irregular ratios were shown to be common. Previous studies using pure M. alba have indicated simple Mendelian inheritances for many of the characters studied herein. However, when interspecific derivatives are involved, some plants give F2 families that do not fit any Mendelian ratio. Data are presented indicating that in segregations where the deficiency occurs it is always in the genotype that has contributed the gene from the non-recurrent species. Investigations carried out in this study are designed to determine possible causes for these "blurred" ratios.


1998 ◽  
Vol 123 (1) ◽  
pp. 98-103
Author(s):  
Maureen C. O'Leary ◽  
Thomas H. Boyle

Polyacrylamide gel electrophoresis was used to study inheritance and linkage of isozymes in Easter cactus (Hatiora species and interspecific hybrids). Five isozyme systems were analyzed: aspartate aminotransferase (AAT), glucose-6-phosphate isomerase (GPI), malate dehydrogenase (MDH), phosphoglucomutase (PGM), and triosephosphate isomerase (TPI). F1, F2, BC1, and S1 progeny were used for inheritance studies. Six polymorphic loci (Aat-1, Gpi-1, Mdh-1, Pgm-1, Pgm-2, and Tpi-2) were identified. Aat-1 and Pgm-1 were linked (recombination frequency = 26% ± 7%), but the other isozyme loci assorted independently. Aberrant segregation ratios were observed in at least one segregating family for all six isozyme loci. We hypothesize that segregation distortion was due to linkage between isozyme loci and other genes subject to pre- or postzygotic selection. The existence of five additional isozyme loci (Aat-2, Gpi-2, Mdh-2, Mdh-3, and Tpi-1) was inferred from segregation patterns and by comparison of isozyme profiles from phylloclades and pollen. These isozyme loci may prove useful for confirming hybridity in intra- and interspecific crosses, determining parentage of cultivars, and assessing genetic diversity in germplasm collections.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 179
Author(s):  
Tanika Thakur ◽  
Kshitija Sinha ◽  
Tushpinder Kaur ◽  
Ritu Kapoor ◽  
Gulshan Kumar ◽  
...  

Rice is a staple food crop for almost half of the world’s population, especially in the developing countries of Asia and Africa. It is widely grown in different climatic conditions, depending on the quality of the water, soil, and genetic makeup of the rice cultivar. Many (a)biotic stresses severely curtail rice growth and development, with an eventual reduction in crop yield. However, for molecular functional analysis, the availability of an efficient genetic transformation protocol is essential. To ensure food security and safety for the continuously increasing global population, the development of climate-resilient crops is crucial. Here, in this study, the rice transformation protocol has been effectively optimized for the efficient and rapid generation of rice transgenic plants. We also highlighted the critical steps and precautionary measures to be taken while performing the rice transformation. We further assess the efficacy of this protocol by transforming rice with two different transformation constructs for generating galactinol synthase (GolS) overexpression lines and CRISPR/Cas9-mediated edited lines of lipase (Lip) encoding the OsLip1 gene. The putative transformants were subjected to molecular analysis to confirm gene integration/editing, respectively. Collectively, the easy, efficient, and rapid rice transformation protocol used in this present study can be applied as a potential tool for gene(s) function studies in rice and eventually to the rice crop improvement.


2005 ◽  
Vol 130 (5) ◽  
pp. 711-715 ◽  
Author(s):  
Nicholi Vorsa ◽  
James J. Polashock

The flavonoids of american cranberry (Vaccinium macrocarpon Ait.) are documented to be beneficial for human health. Among their benefits is a high antioxidant potential, with anthocyanin glycosides being the main contributors. Flavonoid glucose conjugates are reported to be more bioavailable than those with other sugar conjugates. The anthocyanin glycosides of V. macrocarpon fruit are mainly galactosides and arabinosides of the aglycones, cyanidin and peonidin, with less than 8% glucosides. In contrast, the fruit anthocyanins of another cranberry species, V. oxycoccus L. were found to be largely glucosides of cyanidin and peonidin. Interspecific hybrids between these two species were intermediate to the parental species in the proportion of fruit anthocyanin glucosides. About half the progeny (1:1 segregation) in a backcross population (to V. macrocarpon) maintained the relatively high anthocyanin glucoside ratio. In this study, we demonstrate the genetic manipulation of anthocyanin glycosylation in cranberry using interspecific hybridization, resulting in dramatically increased glucose-conjugated anthocyanins.


2020 ◽  
Vol 61 (1) ◽  
pp. 25-36
Author(s):  
Clayton G. Campbell ◽  
Mio Nagano

Buckwheat crop improvement by breeding has been taking place over the past 100 years or more. During this time there has been improvements in many desirable agronomic characteristics which has resulted in higher yields in many of the breeding programs. Phenotypic modifications, such as dwarf, semi-dwarf and branching have been reported. There has also been an effort to increase flower number as this has been shown in cross pollinating buckwheat, to increase yields. Flower cluster modifications and their effects on yield have also been studied. Increased reports on the discovery of buckwheat wild species have been reported from several programs with many interspecific crosses having taken place. Several of these crosses were performed with Fagopyrum esculentum in efforts to increase variability which can be used to increase yield potential as well as to obtain increased nutritional components.  More recent efforts have focused on the development of self-pollinating buckwheat, both from introgression of genes from Fagopyrum homotropicum as well as from mutations in cross pollinating buckwheat. The main problem has been in breeding depression which has occurred in many of the reported attempts. However, high yielding homomorphic, self-pollinating varieties have been developed and are now in commercial production. There is now emphasis being placed on many of the nutritional aspects of buckwheat flour as well as value added components. It is expected that this will increase over time.  Key words: Buckwheat breeding, homomorphic, autogamous buckwheat.   Izvleček Žlahtnjenje ajde poteka že več kot 100 let. V tem času je bila dosežena izboljšava željenih agronomskih lastnosti, kar je pri mnogih programih žlahtnjenja omogočilo večje pridelke. Raziskovalci poročajo o fenotipskih modifikacijah, kot je pritlikava ali pol-pritlikava rast in razvejanje. Za povečanje pridelka so bile raziskane modifikacije socvetij. Število poročil o odkritjih divjih sorodnikov ajde in o mnogih medvrstnih križanjih se je v zadnjem času povečalo. V mnoga od teh križanj je bila vključena navadna ajda (Fagopyrum esculentum), da bi povečali  variabilnost, kar bi lahko omogočilo povečanje pridelka in izboljšanje prehranskih lastnosti. Novejša prizadevanja so se osredotočila na razvoj samooplodnosti pri ajdi, z vključitvijo genov vrste Fagopyrum homotropicum, kot tudi mutacij pri ajdi, ki se je opraševala navzkrižno.  Pri tem je bila glavna težava preseči  depresijo zaradi samooploditev, depresija se je pojavila pri večih poskusih samooploditve. Ne glede na to je uspelo dobiti visokorodne homomorfne samooplodne sorte za ponudbo na trgu semen. Sedaj se prizadevanja usmerjajo k izboljšanju prehranske vrednosti ajde in pomembnih sestavin v ajdovi moki. Pričakovati je, da se bo pomen prehranske vrednosti ajde sčasoma še povečeval. Ključne besede: žlahtnjenje ajde, homomorfnost, samo­oplodna ajda


Sign in / Sign up

Export Citation Format

Share Document