scholarly journals Effect of Cutting Depth and Feed Speed to Surface Roughness in Lathe Process of Screw Conveyor Shaft (Case Study: PT. RAPP)

Author(s):  
Junaidi Abdul Khair ◽  
◽  
Deni Pranata ◽  
Ujang Nurhadek ◽  
◽  
...  

The metalworking process is one of the most important things in manufacturing of machine components, such as lathe process. Therefore, it is required continuously innovation to improve production quality. There are several ways to do this, for example by choosing the right type of tool, depth of cut, and spindle speed. In turning process for the production of goods is very important to produce a precision product in accordance to desiring of size and roughness. The turning speed of a lathe has a type of spindle rotation rate that is used according to production requirements, which uses a rotational speed that can be changed the rate of rotation of the machine, in order to determine the level of surface roughness in the turning process. One is affected the optimal conditions of the turning speed and feeding rate. In this paper, the variations of different rotational speed levels of low speed, medium speed and high speed according to variations of feeding rate in order to know the difference in roughness results for the screw conveyor shaft operation. The roughness was measured on the surface turning process using a reference of surface roughness stand comparator (ISO2632 / I-1975). The result of test revealed the greater speed of feed rate, the greater value of roughness. Reversely, the smaller speed of feed rate affected the lower roughness value.

2006 ◽  
Vol 532-533 ◽  
pp. 349-352
Author(s):  
Wen Xiang Zhao ◽  
Si Qin Pang ◽  
Zhen Hai Long ◽  
Xi Bin Wang

35CrMnSiA, is a kind of important engineering materials that used widely in modern manufacturing fields. The machinability of 35CrMnSiA Steel with hardness of HRc40±2 in high speed turning process was studied in this paper. It is concluded that, when high speed turning of this ultra-high strength alloy steel, the chief wear mode of ceramics is the crater on rake faces; the interaction of depth of cut and feed rate is one of statistic significant effects on cutting force; the interaction of cutting velocity of cut and feed rate is one of statistic significant effects on surface roughness Ra; besides, the empirical formula of average cutting temperature, cutting forces, surface roughness Ra, was established.


2012 ◽  
Vol 576 ◽  
pp. 60-63 ◽  
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis

Hard milling of hardened steel has wide application in mould and die industries. However, milling induced surface finish has received little attention. An experimental investigation is conducted to comprehensively characterize the surface roughness of AISI D2 hardened steel (58-62 HRC) in end milling operation using TiAlN/AlCrN multilayer coated carbide. Surface roughness (Ra) was examined at different cutting speed (v) and radial depth of cut (dr) while the measurement was taken in feed speed, Vf and cutting speed, Vc directions. The experimental results show that the milled surface is anisotropic in nature. Surface roughness values in feed speed direction do not appear to correspond to any definite pattern in relation to cutting speed, while it increases with radial depth-of-cut within the range 0.13-0.24 µm. In cutting speed direction, surface roughness value decreases in the high speed range, while it increases in the high radial depth of cut. Radial depth of cut is the most influencing parameter in surface roughness followed by cutting speed.


2015 ◽  
Vol 1115 ◽  
pp. 12-15
Author(s):  
Nur Atiqah ◽  
Mohammad Yeakub Ali ◽  
Abdul Rahman Mohamed ◽  
Md. Sazzad Hossein Chowdhury

Micro end milling is one of the most important micromachining process and widely used for producing miniaturized components with high accuracy and surface finish. This paper present the influence of three micro end milling process parameters; spindle speed, feed rate, and depth of cut on surface roughness (Ra) and material removal rate (MRR). The machining was performed using multi-process micro machine tools (DT-110 Mikrotools Inc., Singapore) with poly methyl methacrylate (PMMA) as the workpiece and tungsten carbide as its tool. To develop the mathematical model for the responses in high speed micro end milling machining, Taguchi design has been used to design the experiment by using the orthogonal array of three levels L18 (21×37). The developed models were used for multiple response optimizations by desirability function approach to obtain minimum Ra and maximum MRR. The optimized values of Ra and MRR were 128.24 nm, and 0.0463 mg/min, respectively obtained at spindle speed of 30000 rpm, feed rate of 2.65 mm/min, and depth of cut of 40 μm. The analysis of variance revealed that spindle speeds are the most influential parameters on Ra. The optimization of MRR is mostly influence by feed rate. Keywords:Micromilling,surfaceroughness,MRR,PMMA


2016 ◽  
Vol 78 (6-9) ◽  
Author(s):  
Mohd Shahfizal Ruslan ◽  
Kamal Othman ◽  
Jaharah A.Ghani ◽  
Mohd Shahir Kassim ◽  
Che Hassan Che Haron

Magnesium alloy is a material with a high strength to weight ratio and is suitable for various applications such as in automotive, aerospace, electronics, industrial, biomedical and sports. Most end products require a mirror-like finish, therefore, this paper will present how a mirror-like finishing can be achieved using a high speed face milling that is equivalent to the manual polishing process. The high speed cutting regime for magnesium alloy was studied at the range of 900-1400 m/min, and the feed rate for finishing at 0.03-0.09 mm/tooth. The surface roughness found for this range of cutting parameters were between 0.061-0.133 µm, which is less than the 0.5µm that can be obtained by manual polishing. Furthermore, from the S/N ratio plots, the optimum cutting condition for the surface roughness can be achieved at a cutting speed of 1100 m/min, feed rate 0.03 mm/tooth, axial depth of cut of 0.20 mm and radial depth of cut of 10 mm. From the experimental result the lowest surface roughness of 0.061µm was obtained at 900 m/min with the same conditions for other cutting parameters. This study revealed that by milling AZ91D at a high speed cutting, it is possible to eliminate the polishing process to achieve a mirror-like finishing.


2019 ◽  
Vol 130 ◽  
pp. 01031 ◽  
Author(s):  
The Jaya Suteja ◽  
Yon Haryono ◽  
Andri Harianto ◽  
Esti Rinawiyanti

Polyacetal is commonly used as bushing material because of its low coefficient of friction and self lubricant characteristics. The polyacetal is machined by using boring process to produce bushing in certain surface roughness. The objectives of this research are to optimize three independent parameters (depth of cut, feed rate and principal cutting edge angle) of boring process of polyacetal using high speed steel tool to achieve the highest material removal rate and the required surface roughness. Response Surface Methodology is used to investigate the influence of the parameters and optimize the boring process. The research shows that the influence of the boring process parameters on polyacetal is similar compared to on metal. The result reveals that the optimum result is achieved by applying the value of depth of cut, feed rate, and principal cutting edge angle is 2.9 × 10–3 m, 0.229 mm rev–1, and 99.1° respectively. By applying these values, the maximum material rate removal achieved in this research is 1263.4 mm3 s–1 and the surface roughness achieved is 1.57 × 10–6 m.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2998 ◽  
Author(s):  
Kubilay Aslantas ◽  
Mohd Danish ◽  
Ahmet Hasçelik ◽  
Mozammel Mia ◽  
Munish Gupta ◽  
...  

Micro-turning is a micro-mechanical cutting method used to produce small diameter cylindrical parts. Since the diameter of the part is usually small, it may be a little difficult to improve the surface quality by a second operation, such as grinding. Therefore, it is important to obtain the good surface finish in micro turning process using the ideal cutting parameters. Here, the multi-objective optimization of micro-turning process parameters such as cutting speed, feed rate and depth of cut were performed by response surface method (RSM). Two important machining indices, such as surface roughness and material removal rate, were simultaneously optimized in the micro-turning of a Ti6Al4V alloy. Further, the scanning electron microscope (SEM) analysis was done on the cutting tools. The overall results depict that the feed rate is the prominent factor that significantly affects the responses in micro-turning operation. Moreover, the SEM results confirmed that abrasion and crater wear mechanism were observed during the micro-turning of a Ti6Al4V alloy.


2009 ◽  
Vol 407-408 ◽  
pp. 608-611 ◽  
Author(s):  
Chang Yi Liu ◽  
Cheng Long Chu ◽  
Wen Hui Zhou ◽  
Jun Jie Yi

Taguchi design methodology is applied to experiments of flank mill machining parameters of titanium alloy TC11 (Ti6.5A13.5Mo2Zr0.35Si) in conventional and high speed regimes. This study includes three factors, cutting speed, feed rate and depth of cut, about two types of tools. Experimental runs are conducted using an orthogonal array of L9(33), with measurement of cutting force, cutting temperature and surface roughness. The analysis of result shows that the factors combination for good surface roughness, low cutting temperature and low resultant cutting force are high cutting speed, low feed rate and low depth of cut.


Author(s):  
Nhu-Tung Nguyen ◽  
Dung Hoang Tien ◽  
Nguyen Tien Tung ◽  
Nguyen Duc Luan

In this study, the influence of cutting parameters and machining time on the tool wear and surface roughness was investigated in high-speed milling process of Al6061 using face carbide inserts. Taguchi experimental matrix (L9) was chosen to design and conduct the experimental research with three input parameters (feed rate, cutting speed, and axial depth of cut). Tool wear (VB) and surface roughness (Ra) after different machining strokes (after 10, 30, and 50 machining strokes) were selected as the output parameters. In almost cases of high-speed face milling process, the most significant factor that influenced on the tool wear was cutting speed (84.94 % after 10 machining strokes, 52.13 % after 30 machining strokes, and 68.58 % after 50 machining strokes), and the most significant factors that influenced on the surface roughness were depth of cut and feed rate (70.54 % after 10 machining strokes, 43.28 % after 30 machining strokes, and 30.97 % after 50 machining strokes for depth of cut. And 22.01 % after 10 machining strokes, 44.39 % after 30 machining strokes, and 66.58 % after 50 machining strokes for feed rate). Linear regression was the most suitable regression of VB and Ra with the determination coefficients (R2) from 88.00 % to 91.99 % for VB, and from 90.24 % to 96.84 % for Ra. These regression models were successfully verified by comparison between predicted and measured results of VB and Ra. Besides, the relationship of VB, Ra, and different machining strokes was also investigated and evaluated. Tool wear, surface roughness models, and their relationship that were found in this study can be used to improve the surface quality and reduce the tool wear in the high-speed face milling of aluminum alloy Al6061


2020 ◽  
Vol 846 ◽  
pp. 133-138
Author(s):  
Gandjar Kiswanto ◽  
Adrian Mandala ◽  
Maulana Azmi ◽  
Tae Jo Ko

Micro-milling offers high flexibility by producing complex 3D micro-scale products. Weight reduction are one of the optimizations of the product that can make it stronger and more efficient nowadays. Titanium are the most commonly used for micro-scale products especially in biomedical industries because of the biocompatibility properties. Titanium alloys offers high strength with low density and high corrosion resistance that is suitable for weight reduction. This study aims to investigate the influence of high speed cutting parameters to the surface roughness in micromilling of titanium alloy Ti-6Al-4V as high speed cutting offers more productivity since producing more cutting length in the same time. experiments are carried out by micromilling process with variations in high speed cutting parameters of spindle speed and feed rate with a constant depth of cut using a carbide cutting tool of with a diameter of 1 mm. The machining results in the form of a 4 mm slot with a depth as the same as depth of cut, which then measures its surface roughness. It was found that higher feed rate that is followed by higher spindle speed will produce better surface roughness.


Author(s):  
Daniel Fernandes da Cunha ◽  
Marcio Bacci da Silva

The machinability of three commercial samples of the 6351 aluminum alloy with different silicon content was investigated in this work. Several parameters were used to evaluate the machinability in turning process, including the quality of the machined surface and cutting force. A design of experiments with three levels was used focusing on low values of feed rate (0.10, 0.15 and 0.2 mm/rev). The other parameters involved were: depth of cut (1.0, 1.5 and 2.0 mm), the silicon content (1.1, 1.2 and 1.3%) and two sets of cutting speed, one in the build up edge region (80, 100 and 120 m/min) and the other in a built up edge free region (200, 600 and 1000 m/min). The surface roughness parameter evaluated was Rq. A second design of experiment with three levels using higher values of feed rate (0.2, 0.35 and 0.5 mm/rev) and depth of cut of 2.0 mm was used to evaluate the influence of the silicon content in the cutting force. The effect of cutting fluid (dry machining, minimum quantity of fluid and over head cooling) was also analyzed. The results show that the silicon content has influence on the surface roughness. The statistical model in the build up edge region explains 79.95% of the total variation of roughness and 99% for cutting forces, for the other region this value is 81.99% for surface roughness and 98.96% for cutting force. The diameter of the workpiece has an influence on the results because the variation of hardness.


Sign in / Sign up

Export Citation Format

Share Document