scholarly journals DIGITAL SATELLITE MODEM RECEIVER DESIGNED WITH RUSSIAN-MADE ELECTRONIC COMPONENTS

Author(s):  
E.V. Belov ◽  
E.A. Brusin

In this paper we propose the design of the receiving path of an advanced satellite modem. The receiver comprises only the components produced by Russian domestic companies. The parameters of the receiver are discussed in the paper. 3D model of the receiver board obtained using the Altium Designer integrated computer-aided design (CAD) system is also presented.

2012 ◽  
Author(s):  
Syaimak Abd. Syukur ◽  
Masine Md Tap

Sistem Rapid Prototyping (RP) ialah teknologi yang menukar sesuatu reka bentuk yang dibina dalam Computer Aided Design (CAD) ke suatu komponen model 3D. Model CAD biasanya dibina dalam sistem CAD yang kemudiannya dihantar ke sistem RP. Antaramuka yang baik antara sistem CAD dan sistem RP adalah salah satu faktor penting dalam menghasilkan prototaip yang berkualiti tinggi. Kertas kerja ini melaporkan hasil uji kaji yang dijalankan untuk mengenal pasti masalah-masalah dalam memindahkan data antara satu sistem CAD (UNIGRAPHICS) dan satu sistem RP (QUICKSLICE). Berdasarkan hasil uji kaji dan analisis yang dijalankan, satu garis panduan dicadangkan untuk perpindahan data yang lebih berkesan antara sistem CAD (UNIGRAPHICS) dan sistem RP (QUICKSLICE). Kata kunci: CAD; CAM; CAD/CAM; Rapid Prototyping Rapid Prototyping (RP) is a technology that transform a design generated in Computer Aided Design (CAD) to a 3D model parts. CAD models are usually done on a CAD system and then transported into the RP system. A good interface between the CAD and the RP system is one of the key factors of producing a good quality prototype. This paper reports on the results of an experimentation carried out to identify the problems in transferring data between a CAD system (UNIGRAPHICS) and an RP system (QUICKSLICE). Based on the experimentation’s results and analysis, a basic guideline is proposed for a safer data transfer between the CAD system (UNIGRAPHICS) and an RP system (QUICKSLICE). Key words: CAD; CAM; CAD/CAM; Rapid Prototyping


Author(s):  
Colin Chong ◽  
Kiyoshi Sogabe ◽  
Kosuke Ishii

Abstract This paper addresses the problem of balancing rotational plastic parts during the early stages of design. The study develops an interactive methodology that uses a solid modeling CAD system and considers injection molding concerns simultaneously with static and dynamic balance. The Transfer Matrix Method evaluates the dynamic characteristics by predicting the approximate critical speed of the part. Design Compatibility Analysis (DCA) checks for injection molding guidelines. Using these evaluation modules interactively, designers can develop a functional and manufacturable part quickly.


Author(s):  
Xun Xu

One of the key activities in any product design process is to develop a geometric model of the product from the conceptual ideas, which can then be augmented with further engineering information pertaining to the application area. For example, the geometric model of a design may be developed to include material and manufacturing information that can later be used in computer-aided process planning and manufacturing (CAPP/CAM) activities. A geometric model is also a must for any engineering analysis, such as finite elopement analysis (FEA). In mathematic terms, geometric modelling is concerned with defining geometric objects using computational geometry, which is often, represented through computer software or rather a geometric modelling kernel. Geometry may be defined with the help of a wire-frame model, surface model, or solid model. Geometric modelling has now become an integral part of any computer-aided design (CAD) system. In this chapter, various geometric modelling approaches, such as wire-frame, surface, and solid modelling will be discussed. Basic computational geometric methods for defining simple entities such as curves, surfaces, and solids are given. Concepts of parametric, variational, history-based, and history-free CAD systems are explained. These topics are discussed in this opening chapter because (a) CAD was the very first computer-aided technologies developed and (b) its related techniques and methods have been pervasive in the other related subjects like computer-aided manufacturing. This chapter only discusses CAD systems from the application point of view; CAD data formats and data exchange issues are covered in the second chapter.


2014 ◽  
Vol 1036 ◽  
pp. 662-667
Author(s):  
Iulian Stǎnǎşel ◽  
Florin Blaga ◽  
Traian Buidoş

Geneva mechanism is used as a mechanism for transforming rotary motion into intermittent motion and is able to achieve a precise movement and its lock, which makes it usable in many areas, particularly in timer devices, measurement devices, feed mechanisms, positioning mechanisms, pick-up and transport machinery, textile machinery etc. The studied literature showed that, although it has long been known, this mechanism is still interesting for contemporary researchers. The present paper proposes a method of synthesis and a computer-aided kinematic and dynamic analysis for this mechanism. Based on input data, it was developed a computer program that computes the dimensions of components of Geneva mechanism and determines velocity acceleration and displacement of Geneva wheel. The dimensional calculated data were also used to obtain 3D model of the mechanism.


1987 ◽  
Vol 31 (2) ◽  
pp. 214-217
Author(s):  
Douglas H. Harris ◽  
Steven M. Casey

A methodology for measuring the organizational effectiveness of computer-aided design (CAD) was developed and applied. A total of 295 of the 500 most frequent users of CAD in a major aerospace company provided data for the study. User-CAD effectiveness was found to be influenced by 43 major factors and 145 specific system and organizational issues. The 43 factors were classified into the following categories: system functions, system hardware, working environment, system reliability and consistency, user access, user support and training, and system administration. Indexes of User-CAD Effectiveness (UE) and System Availability and Reliability (AR) were combined into an Index of CAD Organizational Effectiveness (OE). Through the application of these methods and indexes, CAD system and organizational deficiencies can be diagnosed, potential high-payoff improvements can be identified, and the impact of developmental efforts can be assessed.


Author(s):  
Chi-Cheng Chu ◽  
Rajit Gadh

In this paper, a series of interface tests on interaction approach for the generation of geometric shape designs via multi-sensory user interface of a Virtual Reality (VR) based System is presented. The goal of these interface tests is to identify an effective user interface for VR based Computer-Aided Design (CAD) system. The intuitiveness of the VR based interaction approach arises from the use of natural hand movements/gestures, and voice commands that emulate the way in which human beings discuss geometric shapes in reality. The focus of this paper is on determining a set of effective interaction approaches by using the combinations of auditory, tactile, and visual sensory modalities to accomplish typical CAD tasks. In order to evaluate the proposed interaction approach, a prototypical VR-CAD system is implemented. A series of interface tests were performed on the prototypical systems to determine the relative efficiency of a set of potential interaction approach with respect to specific fundamental design tasks. The interface test and its results are presented in this paper.


Author(s):  
G C Vosniakos ◽  
T Giannakakis

This work discusses issues concerning the implementation of scanning of unknown engineering objects containing just simple (i.e. no freeform) surfaces with touch probes on three-axis computer numerical control (CNC) measuring machines in order to reconstruct their shape in a computer aided design (CAD) system. Several ideas are put forward e.g. scanning along vertical slicing planes adaptive point sampling distances in-process ‘proactive’ segmentation of points into curve sections and probe radius compensation in two directions as well as limited remedy of edge scanning ambiguities. Most of the suggested algorithms are implemented as parametric numerical control (NC) programs on an OKUMA machining centre.


2014 ◽  
Vol 6 (3) ◽  
pp. 185 ◽  
Author(s):  
Yong-Joon Seo ◽  
Taek-Ka Kwon ◽  
Jung-Suk Han ◽  
Jai-Bong Lee ◽  
Sung-Hun Kim ◽  
...  

2016 ◽  
Vol 74 (5) ◽  
pp. 405-408 ◽  
Author(s):  
Yvens Barbosa Fernandes ◽  
Pedro Fábio Mendonça Perestrelo ◽  
Pedro Yoshito Noritomi ◽  
Roger Neves Mathias ◽  
Jorge Vicente Lopes da Silva ◽  
...  

ABSTRACT We proposed a 3D model to evaluate the role of platybasia and clivus length in the development of Chiari I (CI). Using a computer aided design software, two DICOM files of a normal CT scan and MR were used to simulate different clivus lengths (CL) and also different basal angles (BA). The final posterior fossa volume (PFV) was obtained for each variation and the percentage of the volumetric change was acquired with the same method. The initial normal values of CL and BA were 35.65 mm and 112.66º respectively, with a total PFV of 209 ml. Ranging the CL from 34.65 to 29.65 – 24.65 – 19.65, there was a PFV decrease of 0.47% – 1.12% – 1.69%, respectively. Ranging the BA from 122.66º to 127.66º – 142.66º, the PFV decreased 0.69% – 3.23%, respectively. Our model highlights the importance of the basal angle and clivus length to the development of CI.


Sign in / Sign up

Export Citation Format

Share Document