Aflatoxin-inhibiting ability of Bacillus subtilis isolated from soil in southern Vietnam

2020 ◽  
Vol 1 (4) ◽  
pp. 31-35
Author(s):  
Le Thi Ngoc An’ ◽  
◽  
T. N. Gryazneva ◽  
Nguyen Ngoc Hai ◽  
◽  
...  

Reducing the level of aflatoxin contamination of animal feed using soil-isolated cultures of B. subtilis, showed the prospects of using this type of bacteria for decontamination of feed. A total of 367 B. subtilis cultures were isolated from soil in southern Vietnam and screened for inhibition of aflatoxin production by Aspergillus in vitro. Of these, 34 isolates of biologically active B. subtilis were selected, of which 7 isolates were the most resistant to aflatoxin. These cultures of bacilli after 5 days of cultivation in a mixture with Aspergillus on crushed corn contributed to a 26,76-fold decrease in aflatoxin levels compared to the control. The data obtained indicate that B. subtilis isolates isolated from soil can inhibit aflatoxin in vitro.

Animals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 166 ◽  
Author(s):  
Nimra Azeem ◽  
Muhammad Nawaz ◽  
Aftab Ahmad Anjum ◽  
Shagufta Saeed ◽  
Saba Sana ◽  
...  

Aflatoxin contamination in human food and animal feed is a threat to public safety. Aflatoxin B1 (AFB1) can be especially damaging to poultry production and consequently economic development of Pakistan. The present study assessed the in vitro binding of AFB1 by indigenously characterized probiotic lactobacilli. Six isolates (Lactobacillus gallinarum PDP 10, Lactobacillus reuetri FYP 38, Lactobacillus fermentum PDP 24, Lactobacillus gallinarum PL 53, Lactobacillus paracasei PL 120, and Lactobacillus gallinarum PL 149) were tested for activity against toxigenic Aspergillus flavus W-7.1 (AFB1 producer) by well diffusion assay. Only three isolates (PL 53, PL 120, and PL 149) had activity against A. flavus W-7.1. The ameliorative effect of these probiotic isolates on AFB1 production was determined by co-culturing fungus with lactobacilli for 12 days, followed by aflatoxin quantification by high-performance liquid chromatography. In vitro AFB1 binding capacities of lactobacilli were determined by their incubation with a standard amount of AFB1 in phosphate buffer saline at 37 °C for 2 h. AFB1 binding capacities of isolates ranged from 28–65%. Four isolates (PDP 10, PDP 24, PL 120, and PL 149) also ceased aflatoxin production completely, whereas PL 53 showed 55% reduction in AFB1 production as compared to control. The present study demonstrated Lactobacillus gallinarum PL 149 to be an effective candidate AFB1 binding agent against Aspergillus flavus. These findings further support the binding ability of lactic acid bacteria for dietary contaminants.


2004 ◽  
Vol 31 (2) ◽  
pp. 124-134 ◽  
Author(s):  
H. Q. Xue ◽  
T. G. Isleib ◽  
G. A. Payne ◽  
G. OBrian

Abstract Contamination of peanut (Arachis hypogaea L.) with aflatoxin produced by species of Aspergillus remains a problem for the U.S. peanut industry. Several peanut genotypes were reported to be resistant to in vitro seed colonization by Aspergillus flavus Link ex Fries (IVSCAF), to field seed colonization by A. flavus (FSCAF), or to preharvest aflatoxin contamination (PAC), but few to production of aflatoxin per se. Cotyledons of 39 peanut genotypes reportedly resistant to IVSCAF, FSCAF, or PAC, and eight susceptible to PAC were evaluated in four tests for their ability to support aflatoxin production after inoculation with A. flavus. Cultivars Perry and Gregory were used as checks in each test. Seed cotyledons were separated, manually blanched, inoculated with conidia of A. flavus, placed on moistened filter paper in petri dishes, and incubated for 8 d at 28 C. Dishes were arranged on plastic trays enclosed in plastic bags and stacked with PVC spacers between trays. Incomplete block designs were used for all tests. In each test, none of the genotypes examined was completely resistant to aflatoxin production, but significant genotypic variation was observed in the amount of total aflatoxin accumulated in seeds. Genotypes previously reported to be resistant to IVSCAF, FSCAF, or PAC exhibited differential abilities to support aflatoxin production. PI 590325, PI 590299, PI 290626, and PI 337409 supported reduced levels of aflatoxin, and their degree of resistance was consistent across tests. Fungal growth was highly correlated with aflatoxin production in three tests. The results from this study suggested that there were no absolute relationships of aflatoxin production resistance with IVSCAF, FSCAF, or PAC resistance, but that it should be possible to identify a genotype with high IVSCAF, FSCAF, or PAC resistance and reduced capacity for aflatoxin production by A. flavus.


Toxins ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 142 ◽  
Author(s):  
Marta García-Díaz ◽  
Jessica Gil-Serna ◽  
Belén Patiño ◽  
Esther García-Cela ◽  
Naresh Magan ◽  
...  

Aflatoxin contamination of foodstuffs poses a serious risk to food security, and it is essential to search for new control methods to prevent these toxins entering the food chain. Several essential oils are able to reduce the growth and mycotoxin biosynthesis of toxigenic species, although their efficiency is strongly influenced by the environmental conditions. In this work, the effectiveness of Satureja montana and Origanum virens essential oils to control Aspergillus flavus growth was evaluated under three water activity levels (0.94, 0.96 and 0.98 aw) using a Bioscreen C, a rapid in vitro spectrophotometric technique. The aflatoxin concentrations at all conditions tested were determined by HPLC-FLD. Aspergillus flavus growth was delayed by both essential oil treatments. However, only S. montana essential oil was able to significantly affect aflatoxin production, although the inhibition percentages widely differed among water activities. The most significant reduction was observed at 0.96 aw, which is coincident with the conditions in which A. flavus reached the highest levels of aflatoxin production. On the contrary, the treatment with S. montana essential oil was not effective in significantly reducing aflatoxin production at 0.94 aw. Therefore, it is important to study the interaction of the new control compounds with environmental factors before their application in food matrices, and in vitro ecophysiological studies are a good option since they provide accurate and rapid results.


Author(s):  
I. Szmigiel ◽  
J. Suchodolski ◽  
M. Łukaszewicz ◽  
A. Krasowska

AbstractBacillus subtilis strain 87Y, isolated from the earthworm Eisenia fetida, decreases the growth of pathogenic Salmonella spp. and Staphylococcus aureus and promotes the growth of probiotic Lactococcus spp. Preserving viability in acidic conditions as well as in bile salts, B. subtilis 87Y meets two of the requirements of a probiotic strain. Thanks to the production of the biosurfactant surfactin, B. subtilis 87Y limits the growth of the Gram-positive bacterium S. aureus. In the presence of sucrose, B. subtilis produces levan, which contributes to promoting the growth of other probiotics. Our in vitro studies justify the continuation of enriching rapeseed meal waste from solid-state fermentation with B. subtilis 87Y, to produce high-value animal feed supplements.


2021 ◽  
pp. 1-10
Author(s):  
T.Y. Bereka ◽  
C.G. Kuyu ◽  
K.D. Tolera ◽  
E.M. Addis

Grain contamination by mycotoxins can cause significantly negative health and economic impact in areas where poor agricultural practices and food insecurity is prevalent. This study was conducted to investigate the current postharvest practices and aflatoxin contamination awareness level amongst maize producers in Jimma Zone, Ethiopia. Semi-structured questionnaires were used for quantitative and qualitative data collection from 90 randomly selected maize producers in two districts through a cross-sectional study design. The study revealed poor postharvest practices due to lack of proper infrastructure. Maize is harvested after maturation with the use of traditional sun drying. Plastic sheets are commonly used to protect harvested maize from rain during field drying. The majority of the respondents reported the use of traditional storage structures (81.1%) with great potential for possible mould proliferation and aflatoxin production. Maize producers of up to 62.2% were ignorant about aflatoxins and up to 26.7% reported the possible usage of aflatoxin contaminated maize in human food preparation and animal feed production. Up to 53.3% of the respondents were ignorant of aflatoxin risks in human health and stability during food processing hence the usage of mouldy maize for tella brewing. Further investigations on aflatoxin levels in maize-based food and beverages, and human exposure studies are needed. Moreover, there is a need to enhance the maize producers’ knowledge on good agricultural practices and mycotoxicosis through awareness programmes.


Toxins ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 528 ◽  
Author(s):  
Tihomir Kovač ◽  
Bojan Šarkanj ◽  
Biljana Crevar ◽  
Marija Kovač ◽  
Ante Lončarić ◽  
...  

Aspergillus flavus is the most important mycotoxin-producing fungus involved in the global episodes of aflatoxin B1 contamination of crops at both the pre-harvest and post-harvest stages. However, in order to effectively control aflatoxin contamination in crops using antiaflatoxigenic and/or antifungal compounds, some of which are photosensitive, a proper understanding of the photo-sensitive physiology of potential experimental strains need to be documented. The purpose of the study is therefore to evaluate the effect of visible (VIS) light illumination on growth and conidiation, aflatoxin production ability and modulation of A. flavus oxidative status during in vitro experiment. Aflatoxigenic A. flavus strain was inoculated in aflatoxin-inducing YES media and incubated under three different VIS illumination regimes during a 168 h growth period at 29 °C. VIS illumination reduced A. flavus mycelia biomass yield, both during growth on plates and in liquid media, promoted conidiation and increased the aflatoxin production. Furthermore, aflatoxin production increased with increased reactive oxidative species (ROS) levels at 96 h of growth, confirming illumination-driven oxidative stress modulation activity on A. flavus cells.


2001 ◽  
Vol 91 (9) ◽  
pp. 913-919 ◽  
Author(s):  
María L. Boyd ◽  
Peter J. Cotty

Aspergillus spp. in section Flavi were frequently associated with desert tree legumes in uncultivated areas of the Sonoran Desert. Of 270 samples of debris and fruits of mesquite (Prosopis spp.), ironwood (Olneya tesota), acacia (Acacia spp.), and palo verde (Cercidium and Parkinsonia spp.), 87% were positive for A. flavus (S and L strains) and A. tamarii. A. flavus was the most common species (87%) among the 3,763 isolates examined. Mesquite pods were both the substrate from which A. flavus was recovered most frequently and the substrate from native habitats with the greatest aflatoxin content. In vitro, most desert legumes supported significant growth, reproduction, and aflatoxin production by A. flavus, with mesquite pods yielding 1 × 1010 propagules/g and 5,000 μg/kg of aflatoxin B1. Twenty percent of legume pods collected in the desert contained measurable quantities of aflatoxin, ranging from 1 to >2,500 μg/kg. Insect-damaged mesquite pods had significantly higher aflatoxin than intact pods. Legumes are apparently important reservoirs of aflatoxin-producing fungi and significant sources of aflatoxin contamination in the native Sonoran Desert habitats of Arizona.


2015 ◽  
Vol 8 (3) ◽  
pp. 335-340 ◽  
Author(s):  
H. Zhang ◽  
L.L. Scharfenstein ◽  
C. Carter-Wientjes ◽  
P.-K. Chang ◽  
D. Zhang ◽  
...  

Aflatoxins, produced by Aspergillus flavus and Aspergillus parasiticus, are the most toxic fungal secondary metabolites that contaminate agricultural commodities such as peanuts, cotton and maize. Understanding the underlying mechanisms of crop resistance to fungal infection is an important step for plant breeders to develop better and improved crop varieties for safe production of human food and animal feed. Infection studies have identified a resistant (R) peanut line, GT-C20, which is able to decrease aflatoxin contamination. The mycelial growth of A. flavus NRRL3357 on the R peanut line was much lower than that on the susceptible (S) peanut line, Tifrunner. Besides reducing fungal growth, the R line compared to the S line inhibited aflatoxin production completely. Real-time RT-PCR assays of both the R and S lines infected by A. flavus showed that expression of five aflatoxin biosynthetic pathway genes, the aflR regulatory gene and the aflD, aflM, aflP and aflQ structural genes, was not reduced but was significantly delayed on the R line. The results suggested that resistance factors of the R line acted negatively on A. flavus growth and also altered fungal development. The dysfunction in development changed the timing and the pattern of aflatoxin gene expression, which in part rendered A. flavus unable to produce aflatoxins.


Toxins ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 315 ◽  
Author(s):  
Manish K. Pandey ◽  
Rakesh Kumar ◽  
Arun K. Pandey ◽  
Pooja Soni ◽  
Sunil S. Gangurde ◽  
...  

Aflatoxin is considered a “hidden poison” due to its slow and adverse effect on various biological pathways in humans, particularly among children, in whom it leads to delayed development, stunted growth, liver damage, and liver cancer. Unfortunately, the unpredictable behavior of the fungus as well as climatic conditions pose serious challenges in precise phenotyping, genetic prediction and genetic improvement, leaving the complete onus of preventing aflatoxin contamination in crops on post-harvest management. Equipping popular crop varieties with genetic resistance to aflatoxin is key to effective lowering of infection in farmer’s fields. A combination of genetic resistance for in vitro seed colonization (IVSC), pre-harvest aflatoxin contamination (PAC) and aflatoxin production together with pre- and post-harvest management may provide a sustainable solution to aflatoxin contamination. In this context, modern “omics” approaches, including next-generation genomics technologies, can provide improved and decisive information and genetic solutions. Preventing contamination will not only drastically boost the consumption and trade of the crops and products across nations/regions, but more importantly, stave off deleterious health problems among consumers across the globe.


Sign in / Sign up

Export Citation Format

Share Document