scholarly journals Analysis of Dynamic Properties and Movement Safety of Bogies with Diagonal Links and Rubber-Metal Vibration Absorbers Between the Rubbing Elements of Freight Cars

Author(s):  
Assel Karassayeva ◽  
Yerzhan Adilkhanov ◽  
Sholpan Sekerova ◽  
Saduakhas Japayev ◽  
Algazy Zhauyt ◽  
...  
Author(s):  
Sara Ying Zhang ◽  
Yi-Yuan Li ◽  
Jason Zheng Jiang ◽  
Simon A. Neild ◽  
John H. G. Macdonald

Tuned mass dampers (TMDs), in which a reaction mass is attached to a structural system via a spring–parallel–damper connection, are commonly used in a wide range of applications to suppress deleterious vibrations. Recently, a mass-included absorber layout with an inerter element, termed the tuned mass damper inerter (TMDI), was introduced, showing significant performance benefits on vibration suppression. However, there are countless mass-included absorber layouts with springs, dampers and inerters, which could potentially provide more preferred dynamic properties. Currently, because there is no systematic methodology for accessing them, only an extremely limited number of mass-included absorber layouts have been investigated. This paper proposes an approach to identify optimum vibration absorbers with a reaction mass. Using this approach, a full class of absorber layouts with a reaction mass and a pre-determined number of inerters, dampers and springs connected in series and parallel, can be systematically investigated using generic Immittance-Function-Networks. The advan- tages of the proposed approach are demonstrated via a 3 d.f. structure example.


2013 ◽  
Vol 312 ◽  
pp. 262-267 ◽  
Author(s):  
Chao Peng ◽  
Xing Long Gong

To improve the working frequency band and the damping effect of vibration absorber, an active-adaptive vibration absorber (AAVA) was presented. The AAVA can be considered as the integration of adaptive tuned vibration absorber (ATVA) and active vibration absorbers (AVA). The principle and the dynamic character of the proposed AAVA were theoretically analyzed. Based on the analysis, a prototype was designed and manufactured. Its dynamic properties and vibration attenuation performances were experimentally investigated. The experimental results demonstrated that the damping ratio of the prototype was significantly reduced by the active force. Consequently, its vibration attenuation capability was significantly improved compared with the ATVA.


2020 ◽  
Vol 2020 (2) ◽  
pp. 65-75
Author(s):  
Bogdan Diveev ◽  

The article investigates vibration and noise protection devices for wheeled vehicles using dynamic vibration absorbers (DVA). Algorithms for modeling their dynamic characteristics based on adaptive calculation schemes are presented. A non-linear suspension with DVA and a noise-absorbing partition is considered, which is due to the introduction of a layered composite thin-walled structure with an intermediate damping layer with high damping properties and a DVA system, which provides better vibration and noise absorption. The problems of shock propagation during the overturn of the bus to passengers are also considered. The influence of the parameters of the shock absorber on the dynamic properties of the bus is investigated. The optimal parameters of the shock absorber are determined.


Author(s):  
R.F. Stump ◽  
J.R. Pfeiffer ◽  
JC. Seagrave ◽  
D. Huskisson ◽  
J.M. Oliver

In RBL-2H3 rat basophilic leukemia cells, antigen binding to cell surface IgE-receptor complexes stimulates the release of inflammatory mediators and initiates a series of membrane and cytoskeletal events including a transformation of the cell surface from a microvillous to a lamellar topography. It is likely that dynamic properties of the IgE receptor contribute to the activation of these responses. Fewtrell and Metzger have established that limited crosslinking of IgE-receptor complexes is essential to trigger secretion. In addition, Baird and colleagues have reported that antigen binding causes a rapid immobilization of IgE-receptor complexes, and we have demonstrated an apparent increase with time in the affinity of IgE-receptor complexes for antigen.


2006 ◽  
Vol 73 ◽  
pp. 109-119 ◽  
Author(s):  
Chris Stockdale ◽  
Michael Bruno ◽  
Helder Ferreira ◽  
Elisa Garcia-Wilson ◽  
Nicola Wiechens ◽  
...  

In the 30 years since the discovery of the nucleosome, our picture of it has come into sharp focus. The recent high-resolution structures have provided a wealth of insight into the function of the nucleosome, but they are inherently static. Our current knowledge of how nucleosomes can be reconfigured dynamically is at a much earlier stage. Here, recent advances in the understanding of chromatin structure and dynamics are highlighted. The ways in which different modes of nucleosome reconfiguration are likely to influence each other are discussed, and some of the factors likely to regulate the dynamic properties of nucleosomes are considered.


1980 ◽  
Vol 41 (C6) ◽  
pp. C6-404-C6-407 ◽  
Author(s):  
O. Kanert ◽  
R. Küchler ◽  
M. Mali
Keyword(s):  

1990 ◽  
Vol 51 (C1) ◽  
pp. C1-381-C1-390 ◽  
Author(s):  
M. FRIESEL ◽  
I. MANNA ◽  
W. GUST

2020 ◽  
Vol 7 (3) ◽  
pp. 23-28
Author(s):  
EZIZ SARVAN SHIRVAN ◽  

This paper discusses the kinematic characteristics of lapping process and the main parameters of the process. It was determined that the influencing degree of technological parameters to the forming surface and processes. It was projected the construction of the lapping head for processing of internal cylindrical surfaces, scheme of the lapping operation and graphic description of the forces influencing. The relationships between the axial, radial and tangential cutting forces and the effect of the combined force thereof are determined in order to ensure the necessary surface pressure. During the analysis geometric and mathematical relationships were obtained. The extracted analytical expressions can be realized by further experimental researches and can be used in engineering calculations of technological parameters of processing by lapping. Angular velocity, friction force, linear velocity, also the length of the tactile curve and the radius of the part can be considered the main kinematic and dynamic parameters of the process that the formation of the surface, also the course of the process depends on these parameters. Depending on the kinematic parameters, the wear nature of the tool changes and this changes the linear and angular velocities, which have a significant impact on the accuracy, quality and productivity of processing. When examining the technological capabilities of the process, the nature of the movement between the part and the grinding tool, also changes in cutting speed are often considered as a main factor. Analytical expressions were obtained to determine the main parameters of the process, taking into account the kinematic characteristics of the friction process. These expressions can be used in engineering calculations and allow to determine the optimal values of the processing mode. In order to obtain the required micrometric surface cleanliness and measurement accuracy, correlation relationships were established between the main parameters of the process, equations of the equilibrium system of shear forces were compiled and analytical expressions were obtained based on the analysis of kinematic and dynamic properties of the system.


Sign in / Sign up

Export Citation Format

Share Document