scholarly journals Prediction and Forecasting of Air Quality Index in Chennai using Regression and ARIMA time series models

2021 ◽  
Vol 9 ◽  
Author(s):  
Geetha Mani ◽  
◽  
Joshi Kumar Viswanadhapalli ◽  
Albert Alexander Stonie ◽  
◽  
...  

Air is one of the most fundamental constituents for the sustenance of life on earth. The meteorological, traffic factors, consumption of non-renewable energy sources, and industrial parameters are steadily increasing air pollution. These factors affect the welfare and prosperity of life on earth; therefore, the nature of air quality in our environment needs to be monitored continuously. The Air Quality Index (AQI), which indicates air quality, is influenced by several individual factors such as the accumulation of NO2, CO, O3, PM2.5, SO2, and PM10. This research paper aims to predict and forecast the AQI with Machine Learning (ML) techniques, namely linear regression and time series analysis. Primarily,Multi Linear Regression (MLR) model, supervised machine learning, is developed to predict AQI. NO2, Ozone(O3), PM 2.5, and SO2 sensor output collected from Central Pollution Control Board (CPCB) – Chennai region, India feed as input features and optimized AQI calculated from sensor's output set as a target to train the regression model. The obtained model parameters are validated with new and unseen sensor output. The Key Performance Indices(KPI) like co-efficient of determination, root mean square error and mean absolute error were calculated to validate the model accuracy. The K-cross-fold validation for testing data of MLR was obtained as around 92%. Secondly, the Auto-Regressive Integrated Moving Average (ARIMA) time series model is applied to forecast the AQI. The obtained model parameters were validated with unseen data with a timestamp. The forecasted AQI value of the next 15 days lies in a 95 % confidence interval zone. The model accuracy of test data was obtained as more than 80%.

2019 ◽  
Vol 8 (2) ◽  
pp. 4247-4252

controlling and preserving the better air excellence has become one of the most indispensible events in numerous manufacturing plus metropolitan regions at present. The excellence of air is harmfully affecting payable to the various forms of contamination affected via the transportation, power, fuels expenditures, etc. The installation of destructive fumes is spawning the severe hazard for the class of natural life in developed metropolises. Through cumulative air contamination, we require implementing competent air excellence monitoring models which gathers the statistics about the absorption of air impurities and be responsible for calculation of air contamination in each zone. Hence, air excellence estimation plus calculation has come to be a significant study area. The superiority of air is exaggerated by multi-dimensional influences comprising place, time plus indeterminate parameters. The intention of this development is to examine the machine learning based methods for air quality prediction.


2018 ◽  
Vol 10 (11) ◽  
pp. 4220 ◽  
Author(s):  
Wenyang Huang ◽  
Huiwen Wang ◽  
Yigang Wei

China is experiencing severe environmental degradation, particularly air pollution. To explore whether air pollutants are spatially correlated (i.e., trans-boundary effects) and to analyse the main contributing factors, this research investigates the annual concentration of the Air Quality Index (AQI) and 13 polluting sectors in 30 provinces and autonomous regions across China. Factor analysis, the linear regression model and the spatial auto-regression (SAR) model are employed to analyse the latest data in 2014. Several important findings are derived. Firstly, the global Moran’s I test reveals that the AQI of China shows a distinct positive spatial correlation. The local Moran’s I test shows that significant high–high AQI agglomeration regions are found around the Beijing–Tianjin–Hebei area and the regions of low–low AQI agglomeration all locate in south China, including Yunnan, Guangxi and Fujian. Secondly, the effectiveness of the SAR model is much better than that of the linear regression model, with a significantly improved R-squared value from 0.287 to 0.705. A given region’s AQI will rise by 0.793% if the AQI of its ambient region increases by 1%. Thirdly, car ownership, steel output, coke output, coal consumption, built-up area, diesel consumption and electric power output contribute most to air pollution according to AQI, whereas fuel oil consumption, caustic soda output and crude oil consumption are inconsiderably accountable in raising AQI. Fourthly, the air quality in Beijing and Tianjin is under great exogenous influence from nearby regions, such as Hebei’s air pollution, and cross-boundary and joint efforts must be committed by the Beijing–Tianjin–Hebei region in order to control air pollution.


2019 ◽  
Vol 9 (19) ◽  
pp. 4069 ◽  
Author(s):  
Huixiang Liu ◽  
Qing Li ◽  
Dongbing Yu ◽  
Yu Gu

Air pollution has become an important environmental issue in recent decades. Forecasts of air quality play an important role in warning people about and controlling air pollution. We used support vector regression (SVR) and random forest regression (RFR) to build regression models for predicting the Air Quality Index (AQI) in Beijing and the nitrogen oxides (NOX) concentration in an Italian city, based on two publicly available datasets. The root-mean-square error (RMSE), correlation coefficient (r), and coefficient of determination (R2) were used to evaluate the performance of the regression models. Experimental results showed that the SVR-based model performed better in the prediction of the AQI (RMSE = 7.666, R2 = 0.9776, and r = 0.9887), and the RFR-based model performed better in the prediction of the NOX concentration (RMSE = 83.6716, R2 = 0.8401, and r = 0.9180). This work also illustrates that combining machine learning with air quality prediction is an efficient and convenient way to solve some related environment problems.


Sign in / Sign up

Export Citation Format

Share Document