scholarly journals Testing an aerobic fluidized biofilm process to treat intermittent flows of oil polluted wastewater

Author(s):  
Feroz Shaik ◽  
◽  
Nayeemuddin Mohammed ◽  

An aerobic fluidized biofilm process of treating oil-polluted wastewater has been studied. A series of batch experiments were conducted using synthetic wastewater and the kinetic coefficients were evaluated. The maximum rate of substrate utilization per unit mass microorganisms (K) was 1.6 days-1, the substrate concentration at one-half the maximum growth rate (Ks) was 26 mg/L, the maximum specific growth rate (m) was 1.0 days-1, the ratio of the mass cells formed to the mass of substrate consumed (Y) was 0.61, and the endogenous decay coefficient (Kd ) was 0.044 days-1. The kinetic coefficients obtained were within the range of municipal wastewater. It was observed that up to 1500 mg/L oil (Motor oil SAE–40) could be degraded in a fluidized bed bioreactor (FBBR). The experiments, however, were limited to the oil concentration within a range of 1000-2600 mg/L. Average biofilm thickness () under specific conditions was found to be 22 m and average oil degradation rate of 0.053 mg oil/mg biomass/hour was measured in the FBBR. The results also support that the increase in the concentration of oil in the treatment process reduced significantly the degradation rate of non-oil carbon.

1992 ◽  
Vol 25 (6) ◽  
pp. 167-183 ◽  
Author(s):  
H. Siegrist ◽  
M. Tschui

The wastewater of the municipal treatment plants Zürich-Werdhölzli (350000 population equivalents), Zürich-Glatt (110000), and Wattwil (20000) have been characterized with regard to the activated sludge model Nr.1 of the IAWPRC task group. Zürich-Glatt and Wattwil are partly nitrifying treatment plants and Zürich-Werdhölzli is fully nitrifying. The mixing characteristics of the aeration tanks at Werdhölzli and Glatt were determined with sodium bromide as a tracer. The experimental data were used to calibrate hydrolysis, heterotrophic growth and nitrification. Problems arising by calibrating hydrolysis of the paniculate material and by measuring oxygen consumption of heterotrophic and nitrifying microorganisms are discussed. For hydrolysis the experimental data indicate first-order kinetics. For nitrification a maximum growth rate of 0.40±0.07 d−1, corresponding to an observed growth rate of 0.26±0.04 d−1 was calculated at 10°C. The half velocity constant found for 12 and 20°C was 2 mg NH4-N/l. The calibrated model was verified with experimental dam of me Zürich-Werdhölzli treatment plant during ammonia shock load.


2020 ◽  
Vol 10 (1) ◽  
pp. 4714-4720 ◽  

This study presents the use of a novel photocavity reactor in order to intensify the growth rate, biomass and lipid productivity in microalgae. The reactor offers an aseptic approach for better control on growth rate in microalgae.The Absorption Factor (AF), Attenuation Factor (AtF), Modified Fluence Rate (MFR) and water factor of the photo reactor were recorded to be 1.581, 0.267, 0.347 mW/cm2 and 2.072 respectively. The maximum growth rate recorded was 310 mg L−1 inphotocavity reactor. The results clearly indicate that using the stainless steel visible photoreactor can lead to a significant increase in the growth rate (43.3%), productivity of biomass (27-33%) and lipid content (6-8%) in comparison to microalgae cultivated in glass conical flasks (control). COD, total nitrogen, phosphate and bacterial load (colony-forming unit- CFU) were determined in this study. A decrease in COD (180 to 19 mg/l) and CFU (57×109 to 5×101) of wastewater was also recorded in this study.


1993 ◽  
Vol 57 (2) ◽  
pp. 332-334 ◽  
Author(s):  
A. Blasco ◽  
E. Gómez

Two synthetic lines of rabbits were used in the experiment. Line V, selected on litter size, and line R, selected on growth rate. Ninety-six animals were randomly collected from 48 litters, taking a male and a female each time. Richards and Gompertz growth curves were fitted. Sexual dimorphism appeared in the line V but not in the R. Values for b and k were similar in all curves. Maximum growth rate took place in weeks 7 to 8. A break due to weaning could be observed in weeks 4 to 5. Although there is a remarkable similarity of the values of all the parameters using data from the first 20 weeks only, the higher standard errors on adult weight would make 30 weeks the preferable time to take data for live-weight growth curves.


1978 ◽  
Vol 14 (1) ◽  
pp. 1-5 ◽  
Author(s):  
J. L. Monteith

SUMMARYFigures for maximum crop growth rates, reviewed by Gifford (1974), suggest that the productivity of C3 and C4 species is almost indistinguishable. However, close inspection of these figures at source and correspondence with several authors revealed a number of errors. When all unreliable figures were discarded, the maximum growth rate for C3 stands fell in the range 34–39 g m−2 d−1 compared with 50–54 g m−2 d−1 for C4 stands. Maximum growth rates averaged over the whole growing season showed a similar difference: 13 g m−2 d−1 for C3 and 22 g m−2 d−1 for C4. These figures correspond to photosynthetic efficiencies of approximately 1·4 and 2·0%.


1987 ◽  
Vol 44 (11) ◽  
pp. 1995-2001 ◽  
Author(s):  
Stephen H. Bowen

It is widely believed that fishes require more dietary protein than other vertebrates. Many aspects of fish physiology, nutrition, and trophic ecology have been interpreted within the context of this high protein requirement. Here, fishes are compared with terrestrial homeotherms in terms of (1) protein requirement for maintenance, (2) relative protein concentration in the diet required for maximum growth rate, (3) protein intake rate required for maximum growth rate, (4) efficiency of protein retention in growth, and (5) weight of growth achieved per weight of protein ingested. The two animal groups compared differ only in relative protein concentration in the diet required for maximum growth rate. This difference is explained in terms of homeotherms' greater requirement for energy and does not reflect absolute differences in protein requirement. The remaining measures of protein requirement suggest that fishes and terrestrial homeotherms are remarkably similar in their use of protein as a nutritional resource. Reinterpretation of the role of protein in fish physiology, nutrition, and trophic ecology is perhaps in order.


2012 ◽  
Vol 57 (2) ◽  
pp. 554-566 ◽  
Author(s):  
Kyle F. Edwards ◽  
Mridul K. Thomas ◽  
Christopher A. Klausmeier ◽  
Elena Litchman

1993 ◽  
Vol 248 ◽  
pp. 363-381 ◽  
Author(s):  
G. H. Wheless ◽  
G. T. Csanady

We used a compound matrix method to integrate the Orr–Sommerfeld equation in an investigation of short instability waves (λ < 6 cm) on the coupled shear flow at the air–sea interface under suddenly imposed wind (a gust model). The method is robust and fast, so that the effects of external variables on growth rate could easily be explored. As expected from past theoretical studies, the growth rate proved sensitive to air and water viscosity, and to the curvature of the air velocity profile very close to the interface. Surface tension had less influence, growth rate increasing somewhat with decreasing surface tension. Maximum growth rate and minimum wave speed nearly coincided for some combinations of fluid properties, but not for others.The most important new finding is that, contrary to some past order of magnitude estimates made on theoretical grounds, the eigenfunctions at these short wavelengths are confined to a distance of the order of the viscous wave boundary-layer thickness from the interface. Correspondingly, the perturbation vorticity is high, the streamwise surface velocity perturbation in typical cases being five times the orbital velocity of free waves on an undisturbed water surface. The instability waves should therefore be thought of as fundamentally different flow structures from free waves: given their high vorticity, they are akin to incipient turbulent eddies. They may also be expected to break at a much lower steepness than free waves.


2019 ◽  
Vol 9 (1) ◽  
pp. 14-21
Author(s):  
Kiran P. Savanur

This article examines the research output of economics published by BRICS countries during 1991-2016. Data collected from the Web of Science database. Growth rate (CAGR), Collaboration index, Transformative Activity index (TAI), Co-authorship index and Relative Citation Impact (RCI) indicators have been adopted to analyze the quantity and impact of economic research. We found that all five BRICS countries contributed approximately 10 percentile of the world’s economics research. The highest contribution was made by China with a total of 4424 articles which is 40.59 percent. Russia has the maximum growth rate of 27.99. Overall collaboration rate of economics publications of BRICS countries is moderate.


2021 ◽  
Vol 2 ◽  
Author(s):  
Josiana Steiger ◽  
Olivier Braissant ◽  
Tuomas Waltimo ◽  
Monika Astasov-Frauenhoffer

This study assessed the efficacy of tin and Polyethylenglycol (PEG-3) tallow aminopropylamine in different concentrations on Streptococcus mutans (S. mutans) biofilms to establish a new screening process for different antimicrobial agents and to gain more information on the antibacterial effects of these agents on cariogenic biofilms. Isothermal microcalorimetry (IMC) was used to determine differences in two growth parameters: lag time and growth rate; additionally, reduction in active biofilms was calculated. Experimental mouth rinses with 400 and 800 ppm tin derived from stannous fluoride (SnF2) revealed results (43.4 and 49.9% active biofilm reduction, respectively) similar to meridol mouth rinse (400 ppm tin combined with 1,567 ppm PEG-3 tallow aminopropylamine; 55.3% active biofilm reduction) (p &gt; 0.05), while no growth of S. mutans biofilms was detected during 72 h for samples treated with an experimental rinse containing 1,600 ppm tin (100% active biofilm reduction). Only the highest concentration (12,536 ppm) of rinses containing PEG-3 tallow aminopropylamine derived from amine fluoride (AmF) revealed comparable results to meridol (57.5% reduction in active biofilm). Lower concentrations of PEG-3 tallow aminopropylamine showed reductions of 16.9% for 3,134 ppm and 33.5% for 6,268 ppm. Maximum growth rate was significantly lower for all the samples containing SnF2 than for the samples containing control biofilms (p &lt; 0.05); no differences were found between the control and all the PEG-3 tallow aminopropylamine (p &gt; 0.05). The growth parameters showed high reproducibility rates within the treated groups of biofilms and for the controls; thus, the screening method provided reliable results.


Sign in / Sign up

Export Citation Format

Share Document