A note on growth curves of rabbit lines selected on growth rate or litter size

1993 ◽  
Vol 57 (2) ◽  
pp. 332-334 ◽  
Author(s):  
A. Blasco ◽  
E. Gómez

Two synthetic lines of rabbits were used in the experiment. Line V, selected on litter size, and line R, selected on growth rate. Ninety-six animals were randomly collected from 48 litters, taking a male and a female each time. Richards and Gompertz growth curves were fitted. Sexual dimorphism appeared in the line V but not in the R. Values for b and k were similar in all curves. Maximum growth rate took place in weeks 7 to 8. A break due to weaning could be observed in weeks 4 to 5. Although there is a remarkable similarity of the values of all the parameters using data from the first 20 weeks only, the higher standard errors on adult weight would make 30 weeks the preferable time to take data for live-weight growth curves.

2004 ◽  
Vol 78 (2) ◽  
pp. 203-212 ◽  
Author(s):  
R. M. Lewis ◽  
G. C. Emmans ◽  
G. Simm

AbstractSheep of a line selected on an index to increase carcass lean content at 150 days of age (selected (S); no. = 90), and an unselected control line (control (C); no. = 90), were given ad libitum foods of three different protein concentrations (192, 141 and 120 g/kg dry matter). Growth was measured from about 21 to 114 kg live weight. The carcasses of each line were analysed for lean, fat and bone at three widely varying weights in both males and females. Level of protein did not affect the extent to which S was superior to C in the content of fat (0.86 as much) or lean (1.08 as much) in the carcass. The fat concentration of the carcass increased, and the lean concentration decreased, as dietary protein concentration was reduced (P < 0.01). On the highest level of protein used, the S line grew 1.17 times as fast and was 1.10 times as efficient compared with C. The extent to which growth rate in S exceeded that in C was greater on the highest level of protein used (92.3 g/day) than on the two lower protein diets (26.4 g/day). The difference of 65.9 (s.e. 18.4) g/day was significant (P < 0.01). On the diet of highest protein concentration, growth was well described by a Gompertz function. The S line had an estimated maximum growth rate 1.25 times that of the C when averaged across males and females. A Spillman function was used to describe weight in terms of cumulative intake. It worked well for all three levels of dietary protein concentration. S sheep performed better than unselected sheep on foods differing in protein concentration and over a wide range of live weights, suggesting benefits are likely within the diverse farming environments found in practice.


2021 ◽  
Vol 273 ◽  
pp. 02024
Author(s):  
Anatoly Shevkhuzhev ◽  
Vladimir Pogodaev ◽  
Dagir Smakuev

The aim of the research was to establish quantitative and qualitative indicators of meat productivity of Simmental bull calves of various constitutional types when raised using the technology of beef cattle breeding. The maximum growth rate and the highest yield of meat products were obtained from Simmental bulls of the meat and dairy type when they were raised and fed according to the technology of beef cattle breeding. Receiving from the mothers for 205 days of the sucking period more fatty milk, they gave 1250 g of gain per day and reached 289.7 kg of live weight by the cut. Having retained a high growth rate in the future, they at the final fattening gave 1321 g of gain per day and at 20 months the live weight was 659.3 kg. The superiority of Simmentals over analogues was natural by 3.4–13.3% by weight of the steamed carcass, by 0.4–1.8% in slaughter yield, by 1.4–11.1 kg in terms of the amount of pulp in the carcass and pulp per bones by 0.1–0.3 kg, protein in meat by 0.12; 1.19; 2.59 kg and the amount of energy in the pulp by 0.14; 0.44; 1.75 MJ. Simmental bulls of the meat and dairy type also have a high ability to transform protein and feed energy into protein and energy from the pulp of the carcass.


1968 ◽  
Vol 12 (3) ◽  
pp. 305-315 ◽  
Author(s):  
Pol Lhoas

1. The comparison of the dry weight of thin layer haploid and diploid colonies of A. niger on complete medium and complete medium supplemented with p-fluoro-phenylalanine led to the conclusion that there is a difference in growth rates of hyphae under these different conditions.2. The growth curves of the same strains on both media were established. On complete medium, haploids and diploid show a growth rate increasing linearly for about 20 h after germination and reaching a maximum which is then maintained. On p-fluorophenylalanine, the haploids show a similar curve, although the maximum growth rate reached and maintained is about half that on complete medium; for the diploid, however, the maximum is less than the corresponding one in the haploid and, once this maximum has been reached, the growth rate goes down linearly to a very low value which is then maintained.3. The cytological study of the hyphal tip cell showed, in the presence of the amino acid analogue, a reduction of the mean size of the diploid nuclei together with an increase of the number of nuclear fragments. This explains the growth rates observed and is accepted as a confirmation that p-fluorophenylalanine, by its action on the mitosis, favours chromosome losses which lead finally to the production of haploid nuclei.


2006 ◽  
Vol 49 (3) ◽  
pp. 293-299 ◽  
Author(s):  
I. E. Ersoy ◽  
M. Mendeş ◽  
S. Aktan

Abstract. The purpose of this study was to establish the growth curves parameters of American Bronze turkeys. The weekly body weight changes of male and female turkeys were recorded during 11 to 24 weeks of age. The Richards' growth model fitted the turkey weight and age (week) data. Profile analysis was also applied to weight-age data in order to get more detailed information about the differences in the live weights of male and female turkeys in consecutive weeks. Estimates for mature body weight were found as 9720.40 ± 971.33 g and higher for males than for females as 6029.96 ± 316.55 g. Based on Richards’ model, male turkeys matured more slowly and it was needed that a more time to reach mature body weight than female turkeys. Results of profile analysis supported those results. Estimates for the absolute growth rate, absolute maturing rate and relative growth rate values were higher for females when compared to males. Male turkeys reached the maximum growth rate at 16.30 weeks of age whereas female ones reached the maximum growth rate at 12.85 weeks of age. Live weights of male and female turkeys, when both reached the maximum growth rate, were 3475.61 g and 2156.06 g, respectively. Male turkeys reached 80 % of their mature weights at 24 weeks of age, whereas female ones reached 92% of their mature weight.


2005 ◽  
Vol 22 (6) ◽  
pp. 491-495 ◽  
Author(s):  
Stefano Perni ◽  
Peter W. Andrew ◽  
Gilbert Shama

1978 ◽  
Vol 14 (1) ◽  
pp. 1-5 ◽  
Author(s):  
J. L. Monteith

SUMMARYFigures for maximum crop growth rates, reviewed by Gifford (1974), suggest that the productivity of C3 and C4 species is almost indistinguishable. However, close inspection of these figures at source and correspondence with several authors revealed a number of errors. When all unreliable figures were discarded, the maximum growth rate for C3 stands fell in the range 34–39 g m−2 d−1 compared with 50–54 g m−2 d−1 for C4 stands. Maximum growth rates averaged over the whole growing season showed a similar difference: 13 g m−2 d−1 for C3 and 22 g m−2 d−1 for C4. These figures correspond to photosynthetic efficiencies of approximately 1·4 and 2·0%.


1992 ◽  
Vol 25 (6) ◽  
pp. 167-183 ◽  
Author(s):  
H. Siegrist ◽  
M. Tschui

The wastewater of the municipal treatment plants Zürich-Werdhölzli (350000 population equivalents), Zürich-Glatt (110000), and Wattwil (20000) have been characterized with regard to the activated sludge model Nr.1 of the IAWPRC task group. Zürich-Glatt and Wattwil are partly nitrifying treatment plants and Zürich-Werdhölzli is fully nitrifying. The mixing characteristics of the aeration tanks at Werdhölzli and Glatt were determined with sodium bromide as a tracer. The experimental data were used to calibrate hydrolysis, heterotrophic growth and nitrification. Problems arising by calibrating hydrolysis of the paniculate material and by measuring oxygen consumption of heterotrophic and nitrifying microorganisms are discussed. For hydrolysis the experimental data indicate first-order kinetics. For nitrification a maximum growth rate of 0.40±0.07 d−1, corresponding to an observed growth rate of 0.26±0.04 d−1 was calculated at 10°C. The half velocity constant found for 12 and 20°C was 2 mg NH4-N/l. The calibrated model was verified with experimental dam of me Zürich-Werdhölzli treatment plant during ammonia shock load.


1987 ◽  
Vol 44 (11) ◽  
pp. 1995-2001 ◽  
Author(s):  
Stephen H. Bowen

It is widely believed that fishes require more dietary protein than other vertebrates. Many aspects of fish physiology, nutrition, and trophic ecology have been interpreted within the context of this high protein requirement. Here, fishes are compared with terrestrial homeotherms in terms of (1) protein requirement for maintenance, (2) relative protein concentration in the diet required for maximum growth rate, (3) protein intake rate required for maximum growth rate, (4) efficiency of protein retention in growth, and (5) weight of growth achieved per weight of protein ingested. The two animal groups compared differ only in relative protein concentration in the diet required for maximum growth rate. This difference is explained in terms of homeotherms' greater requirement for energy and does not reflect absolute differences in protein requirement. The remaining measures of protein requirement suggest that fishes and terrestrial homeotherms are remarkably similar in their use of protein as a nutritional resource. Reinterpretation of the role of protein in fish physiology, nutrition, and trophic ecology is perhaps in order.


2012 ◽  
Vol 57 (2) ◽  
pp. 554-566 ◽  
Author(s):  
Kyle F. Edwards ◽  
Mridul K. Thomas ◽  
Christopher A. Klausmeier ◽  
Elena Litchman

Sign in / Sign up

Export Citation Format

Share Document