scholarly journals Comprehensive optimization of project cost for long supply pipelines

2021 ◽  
Vol 9 (3A) ◽  
Author(s):  
Abdulrahman Al-Khomairi ◽  
◽  
BongSeog Jung ◽  

This paper proposes a “comprehensive” pipeline design optimization approach that considers pipe parameters, protection device parameters, and project maintenance and operational costs over the pipeline’s service life. The objective is to search for an optimal pipeline design by analyzing alternatives with different lifespans, while taking inflation and interest rates into account. A specially designed genetic algorithm routine suggests possible solutions that encompass a range of available pipe diameters, pipe materials, pipe pressure ratings, surge tank sizes, and inlet/ outlet resistances. With both steady-state and unsteady pipe flow analyses, the solution provides a system satisfying required demand without violating velocity and pressure constraints. A real-world project is selected to investigate the outcome of the optimization procedure. The proposed comprehensive optimization approach is shown to be an effective method of comparing a wide range of design alternatives for pipeline projects and identifying the one that optimizes the overall cost.

Author(s):  
Ibrahim H. Elsebaie ◽  
Abdulrahman Al-Khomairi

Abstract This paper suggests a pipeline project optimization approach that compares alternatives with different life spans. The average inflation rate is used to project the future maintenance, operation and replacement costs. The average interest rate is used to express all the costs in Equivalent Real Annual Cost (ERAC), which is the correct cost form to compare alternatives with different life spans. The pipe diameter, material, pressure rating, surge tank size, and inlet/outlet resistances are the decision variables. A software was compiled with a commercial pipeline software to generate all the possible design alternatives based on the decision variables. Pipe initial cost as well as operation and maintenance costs are computed for each design alternative. The alternative with the least ERAC value is the optimum one. It was found that the approach can lead to substantial savings in pipelines projects cost. For pipes 800 mm in diameter or larger, and when selecting the optimum diameter, savings are between 23 and 27% in the total project cost. When imposing certain pipe material savings in overall cost will be 8.5, 16.3 and 31.3% for ductile iron, GRP and mild steel pipe material, respectively.


Author(s):  
Nicola Molinari ◽  
Jonathan P. Mailoa ◽  
Boris Kozinsky

We show that strong cation-anion interactions in a wide range of lithium-salt/ionic liquid mixtures result in a negative lithium transference number, using molecular dynamics simulations and rigorous concentrated solution theory. This behavior fundamentally deviates from the one obtained using self-diffusion coefficient analysis and agrees well with experimental electrophoretic NMR measurements, which accounts for ion correlations. We extend these findings to several ionic liquid compositions. We investigate the degree of spatial ionic coordination employing single-linkage cluster analysis, unveiling asymmetrical anion-cation clusters. Additionally, we formulate a way to compute the effective lithium charge that corresponds to and agrees well with electrophoretic measurements and show that lithium effectively carries a negative charge in a remarkably wide range of chemistries and concentrations. The generality of our observation has significant implications for the energy storage community, emphasizing the need to reconsider the potential of these systems as next generation battery electrolytes.<br>


1975 ◽  
Vol 14 (3) ◽  
pp. 370-375
Author(s):  
M. A. Akhtar

I am grateful to Abe, Fry, Min, Vongvipanond, and Yu (hereafter re¬ferred to as AFMVY) [1] for obliging me to reconsider my article [2] on the demand for money in Pakistan. Upon careful examination, I find that the AFMVY results are, in parts, misleading and that, on the whole, they add very little to those provided in my study. Nevertheless, the present exercise as well as the one by AFMVY is useful in that it furnishes us with an opportunity to view some of the fundamental problems involved in an empi¬rical analysis of the demand for money function in Pakistan. Based on their elaborate critique, AFMVY reformulate the two hypo¬theses—the substitution hypothesis and the complementarity hypothesis— underlying my study and provide us with some alternative estimates of the demand for money in Pakistan. Briefly their results, like those in my study, indicate that income and interest rates are important in deter¬mining the demand for money. However, unlike my results, they also suggest that the price variable is a highly significant determinant of the money demand function. Furthermore, while I found only a weak support for the complementarity between money demand and physical capital, the results obtained by AFMVY appear to yield a strong support for that rela¬tionship.1 The difference in results is only a natural consequence of alter¬native specifications of the theory and, therefore, I propose to devote most of this reply to the criticisms raised by AFMVY and the resulting reformulation of the two mypotheses.


2021 ◽  
pp. 104973232199379
Author(s):  
Olaug S. Lian ◽  
Sarah Nettleton ◽  
Åge Wifstad ◽  
Christopher Dowrick

In this article, we qualitatively explore the manner and style in which medical encounters between patients and general practitioners (GPs) are mutually conducted, as exhibited in situ in 10 consultations sourced from the One in a Million: Primary Care Consultations Archive in England. Our main objectives are to identify interactional modes, to develop a classification of these modes, and to uncover how modes emerge and shift both within and between consultations. Deploying an interactional perspective and a thematic and narrative analysis of consultation transcripts, we identified five distinctive interactional modes: question and answer (Q&A) mode, lecture mode, probabilistic mode, competition mode, and narrative mode. Most modes are GP-led. Mode shifts within consultations generally map on to the chronology of the medical encounter. Patient-led narrative modes are initiated by patients themselves, which demonstrates agency. Our classification of modes derives from complete naturally occurring consultations, covering a wide range of symptoms, and may have general applicability.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 290
Author(s):  
Maxim Pyzh ◽  
Kevin Keiler ◽  
Simeon I. Mistakidis ◽  
Peter Schmelcher

We address the interplay of few lattice trapped bosons interacting with an impurity atom in a box potential. For the ground state, a classification is performed based on the fidelity allowing to quantify the susceptibility of the composite system to structural changes due to the intercomponent coupling. We analyze the overall response at the many-body level and contrast it to the single-particle level. By inspecting different entropy measures we capture the degree of entanglement and intraspecies correlations for a wide range of intra- and intercomponent interactions and lattice depths. We also spatially resolve the imprint of the entanglement on the one- and two-body density distributions showcasing that it accelerates the phase separation process or acts against spatial localization for repulsive and attractive intercomponent interactions, respectively. The many-body effects on the tunneling dynamics of the individual components, resulting from their counterflow, are also discussed. The tunneling period of the impurity is very sensitive to the value of the impurity-medium coupling due to its effective dressing by the few-body medium. Our work provides implications for engineering localized structures in correlated impurity settings using species selective optical potentials.


2021 ◽  
Vol 11 (8) ◽  
pp. 3397
Author(s):  
Gustavo Assunção ◽  
Nuno Gonçalves ◽  
Paulo Menezes

Human beings have developed fantastic abilities to integrate information from various sensory sources exploring their inherent complementarity. Perceptual capabilities are therefore heightened, enabling, for instance, the well-known "cocktail party" and McGurk effects, i.e., speech disambiguation from a panoply of sound signals. This fusion ability is also key in refining the perception of sound source location, as in distinguishing whose voice is being heard in a group conversation. Furthermore, neuroscience has successfully identified the superior colliculus region in the brain as the one responsible for this modality fusion, with a handful of biological models having been proposed to approach its underlying neurophysiological process. Deriving inspiration from one of these models, this paper presents a methodology for effectively fusing correlated auditory and visual information for active speaker detection. Such an ability can have a wide range of applications, from teleconferencing systems to social robotics. The detection approach initially routes auditory and visual information through two specialized neural network structures. The resulting embeddings are fused via a novel layer based on the superior colliculus, whose topological structure emulates spatial neuron cross-mapping of unimodal perceptual fields. The validation process employed two publicly available datasets, with achieved results confirming and greatly surpassing initial expectations.


Author(s):  
Sandip K Lahiri ◽  
Kartik Chandra Ghanta

Four distinct regimes were found existent (namely sliding bed, saltation, heterogeneous suspension and homogeneous suspension) in slurry flow in pipeline depending upon the average velocity of flow. In the literature, few numbers of correlations has been proposed for identification of these regimes in slurry pipelines. Regime identification is important for slurry pipeline design as they are the prerequisite to apply different pressure drop correlation in different regime. However, available correlations fail to predict the regime over a wide range of conditions. Based on a databank of around 800 measurements collected from the open literature, a method has been proposed to identify the regime using artificial neural network (ANN) modeling. The method incorporates hybrid artificial neural network and genetic algorithm technique (ANN-GA) for efficient tuning of ANN meta parameters. Statistical analysis showed that the proposed method has an average misclassification error of 0.03%. A comparison with selected correlations in the literature showed that the developed ANN-GA method noticeably improved prediction of regime over a wide range of operating conditions, physical properties, and pipe diameters.


1996 ◽  
Vol 324 ◽  
pp. 163-179 ◽  
Author(s):  
A. Levy ◽  
G. Ben-Dor ◽  
S. Sorek

The governing equations of the flow field which is obtained when a thermoelastic rigid porous medium is struck head-one by a shock wave are developed using the multiphase approach. The one-dimensional version of these equations is solved numerically using a TVD-based numerical code. The numerical predictions are compared to experimental results and good to excellent agreements are obtained for different porous materials and a wide range of initial conditions.


2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
E. Panero ◽  
L. Gastaldi ◽  
W. Rapp

Squat exercise is acquiring interest in many fields, due to its benefits in improving health and its biomechanical similarities to a wide range of sport motions and the recruitment of many body segments in a single maneuver. Several researches had examined considerable biomechanical aspects of lower limbs during squat, but not without limitations. The main goal of this study focuses on the analysis of the foot contribution during a partial body weight squat, using a two-segment foot model that considers separately the forefoot and the hindfoot. The forefoot and hindfoot are articulated by the midtarsal joint. Five subjects performed a series of three trials, and results were averaged. Joint kinematics and dynamics were obtained using motion capture system, two force plates closed together, and inverse dynamics techniques. The midtarsal joint reached a dorsiflexion peak of 4°. Different strategies between subjects revealed 4° supination and 2.5° pronation of the forefoot. Vertical GRF showed 20% of body weight concentrated on the forefoot and 30% on the hindfoot. The percentages varied during motion, with a peak of 40% on the hindfoot and correspondently 10% on the forefoot, while the traditional model depicted the unique constant 50% value. Ankle peak of plantarflexion moment, power absorption, and power generation was consistent with values estimated by the one-segment model, without statistical significance.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Teng Zhou ◽  
Yifan Xu ◽  
Zhenyu Liu ◽  
Sang Woo Joo

Topology optimization method is applied to a contraction–expansion structure, based on which a simplified lateral flow structure is generated using the Boolean operation. A new one-layer mixer is then designed by sequentially connecting this lateral structure and bent channels. The mixing efficiency is further optimized via iterations on key geometric parameters associated with the one-layer mixer designed. Numerical results indicate that the optimized mixer has better mixing efficiency than the conventional contraction–expansion mixer for a wide range of the Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document