scholarly journals Impact of engineering properties of grass seeds in developing post-harvest operations and machineries

2021 ◽  
Vol 22 (3) ◽  
pp. 395-399
Author(s):  
Sanjay Kumar Singh ◽  
Sheshrao Kautkar ◽  
Amit Patil

Engineering properties of grass seeds are most important for the development of post-harvest mechanization and operations. Therefore engineering properties of fluffy as well as true seeds were determined in view of its important in development of post-harvest mechanization. The mean values of length, width, thickness, arithmetic mean diameter, geometric mean diameter, sphericity, surface area, volume, thousands seed mass and bulk density of fluffy Deenanath grass seed were observed in the range of 5.23-7.17 mm, 2.10-3.44 mm, 1.17-2.49 mm, 3.07- 4.13 mm, 2.53- 3.69 mm,  41.01-60.13 %, 19.12-43.70 mm2, 3.70-18.24 mm3, 0.789-0.849 g and 7.41-7.89 kg/m3 respectively. However, for true seeds of Deenanath grass, the range of these values varied from 2.23-2.65 mm, 0.69-0.95 mm, 0.47-0.69 mm, 1.16-1.40 mm, 0.93-1.17 mm,  38.69-47.33 %, 2.67-4.31 mm2, 3.60-9.64 mm3, 0.468-0.488 g and 602.97-624.29 kg/m3 respectively moisture level of 9 % db. Determined properties of fluffy as well as true seeds of Deenanath would be utilized to develop threshing, cleaning, grading, seed storage and packaging operations and machineries.

2020 ◽  
Vol 44 (01) ◽  
pp. 20-28
Author(s):  
V. S. Sonone ◽  
D. A. Pawar ◽  
V. P. Kad ◽  
P. A. Unde

Engineering properties and their relationships with mass for Phule Sharbati acid lime cultivar were investigated. Relationship between physical properties of fruits and its mass will create tremendous change in the packaging industry. The mean values of engineering properties such as minor diameter, intermediate diameter, major diameter, geometric mean diameter, sphericity, aspect ratio, mass, surface area, volume and true density were found to be 42.55 mm, 41.20 mm, 40.41 mm, 0.94, 0.94, 38.17g, 49997 mm2, 33322.8 mm3 and 1 g/cc, respectively. Regression models were used to predict the effect of mass of acid lime and classified into two: 1–Single and multiple variable regressions of acid lime mass and dimensional characteristics and 2- Single variable regression for geometric mean diameter, sphericity, surface area and volume. Results indicated that mass modeling of acid lime based on minor diameter was found most appropriate in the first classification. In the second classification, the power-law model was noticed best on the basis of the geometric mean diameter, surface area and the volume.


2021 ◽  
Vol 58 (03) ◽  
pp. 250-261
Author(s):  
Sanjay Kumar Singh ◽  
Sheshrao Kautkar ◽  
P. K. Pathak ◽  
Bholuram Gurjar ◽  
Sunil Swami ◽  
...  

Propagation of grasses through seeds is important in view of vigour and germination. Various grasses as Pennisetum pedicellatum Trin., Cenchrus ciliaris L., Chrysopogan fulvus have lower vigour and germination, due to which they need specific operations as defluffing, separation of true seeds, cleaning and grading by specific machines. In designing a machine for a specific use, physical properties and their behaviour with moisture play an important role. A study was conducted to assess the effect of moisture content at five levels [6.88 - 19.23 %, (d.b.)] on selected physical properties of defluffed Deenanath grass seed. The length, width, thickness, arithmetic mean diameter, and geometric mean diameter of defluffed Deenanath seed increased from 2.30 mm to 2.56 mm, 0.71 mm to 0.96 mm, 0.47 mm to 0.63 mm, 1.16 mm to 1.38 mm, and 0.90 mm to 1.15 mm, respectively, with increase in moisture content 6.88 % to 19.23 %. Bulk density, true density, and porosity decreased from 652.16 kg.m-3 to 585.78 kg.m-3, 852.63 kg.m-3 to 792.71 kg.m-3, and 25.62 % to 24.97 %, respectively, with increase in moisture content from 6.88 % to 19.23 per cent. The aspect ratio, sphericity, surface area, volume, and thousand-seed mass of the seed were in the range of 30.91 - 37.51 %, 0.39 - 0.45, 2.58 - 3.23 mm2 , 3.71 - 4.97 mm3 , and 0.480 - 0.523 g, respectively. Linear relationships with correlation coefficients higher than 0.90 were observed for the physical properties over the experimental range of moisture content.


Author(s):  
Mesut Dilmac ◽  
Ebubekir Altuntas

Selected some engineering (geometric, volumetric and frictional) properties of peanut (Arachis hypogaea L.) and its kernel were determined at a moisture content of 8.25% and 10.03% (dry basis), respectively. The mean values of length, width, thickness and geometric mean diameter were 40.73 mm, 17.52 mm , 15.61 mm, 22.46 mm for peanut, and 21.08 mm, 10.22 mm, 10.89 mm, 13.22 mm for its kernel, respectively. The sphericity, bulk and true densities, angle of repose, porosity, surface area, mass and volume values were obtained for peanut and its kernel, respectively. The mean values of static and dynamic coefficient of friction against galvanized steel, chipboard and plywood surfaces were determined. The maximum static and dynamic coefficients of friction were found for plywood and galvanized steel surfaces for peanut and its kernel, respectively.


Author(s):  
Tega A Emurigho ◽  
Canice O.O Kabuo ◽  
Arinze N Ifegbo

The physical and engineering properties of fresh and dried tiger nut (Cyperus esculentus) were determined at moisture content of 41.20% and 16.40% on wet basis respectively. The mean values for the three principal axes (length, width and thickness) were 9.52mm, 8.16mm, and 8.16mm for fresh tiger nut and 9.14mm, 7.72mm and 8.03mm for dried tiger nut respectively, showing a decrease with decrease in moisture content and was significantly different at p?0.05. The mean values of the bulk density, true density and porosity of both fresh and dried tiger nut were 0.59g/cm3 , 0.97g/cm3 , 40.61 and 0.58g/cm3, 0.94g/cm3 , 40.35 respectively and were not significantly different at p?0.05. The mean angle of repose and coefficient of static friction over formica, stainless steel, glass and plywood surfaces of fresh tiger nut were 50.11o , 2.73, 2.45, 2.22 and 1.77 while that of dried tiger nut were 48.23o , 2.41, 2.03, 2.11 and 2.00 respectively. The mean rupture force increased with compression force of 90.08N on the major axis to 116.88N for fresh tiger nut and from 120.55N to 161.10N for dried tiger nut and were significantly different at p?0.05. These properties determined are necessary in the design and fabrication of hoppers, conveyor equipment and the force tiger nut can withstand before it is ruptured.


2010 ◽  
Vol 56 (No. 3) ◽  
pp. 99-106 ◽  
Author(s):  
S.M.T. Gharibzahedi ◽  
V. Etemad ◽  
J. Mirarab-Razi ◽  
M. Fos hat

Moisture-dependent engineering properties of pine nut were studied at 6.3, 8.2, 10.8, 14.5, 18.9, and 20.1% moisture content (dry basis). The length, width, thickness, and geometric mean diameter increased significantly (P < 0.05) from 21.75 to 21.85 mm, 7.39 to 7.47 mm, 6.07 to 6.14 mm, and 9.89 to 9.98 mm, respectively, with an increase in moisture content from 6.3% to 20.1%, whereas the increase in sphericity from 45.49% to 45.69% was not significant. Similarly, thousand seed mass, true density, porosity, terminal velocity, and angle of repose increased (P < 0.05) from 0.85 to 0.93 kg, 1043.3 to 1071 kg/m3, 41.31% to 44.57%, 8.67 to 8.83 m/s, and 35.4° to 39°, respectively, with an increase in moisture content under the experimental condition. Moreover, the bulk density decreased significantly (P < 0.05) from 612.3 to 593.6 kg/m3. Coefficient of static friction increased (P < 0.05) from 0.251 to 0.292, 0.241 to 0.271, 0.227 to 0.262, and 0.218 to 0.247 on plywood, galvanized iron sheet, stainless steel, and glass surfaces, respectively, with an increase in moisture content from 6.3% to 20.1%.


Author(s):  
Seyed Mohammad Ali Razavi ◽  
Maryam BahramParvar

In this paper, the physical properties such as length, width, thickness, geometric mean diameter, arithmetic mean diameter, mass, true volume, apparent volume, true density, bulk density, porosity, sphericity, surface area, shell ratio, aspect ratio, static coefficient of friction and mechanical characteristics namely firmness, hardness, adhesiveness, adhesive force and total positive area in puncture test were determined for kiwifruit of the Hayward variety. These properties are necessary in the design of the equipment for harvesting, processing and transportation, separating and packing. The results showed that the length, width, thickness, arithmetic mean diameter, geometric mean diameter, sphericity and aspect ratio of kiwifruit varied from 55.5 to 82.3 mm, 46.8 to 54.8 mm, 41.5 to 52.4 mm, 49.8 to 60.99 mm, 49.56 to 59.28 mm, 71.95 to 90.48% and 62.67 to 89.20%, respectively. While the surface area determined by McCabe et al.'s and Jean & Ball's formula, and surface area measured by experimental method changed from 77.11 to 110.34 cm2, 48.74 to 95.95 cm2 and 83.29 to 108.71 cm2, respectively. The values of the fruit's true volume, apparent volume, true density, bulk density and porosity were between 85-120 cm3, 63.69-109.01 cm3, 940-1040 kg/m3, 544.73-572.17 kg/m3 and 39.70-45.5%, respectively. Furthermore, the unit mass and peel ratio of kiwifruits ranged from 75.18 to 135.32 g and 8.91 to 12.51%, respectively. On four different surfaces, namely plywood, galvanized iron sheet, glass and fiberglass, static coefficient of friction varied from 0.34 on glass to 0.49 against plywood. The average firmness, hardness, adhesiveness, adhesive force and total positive area of peeled fruits were 229.42 g, 367.49 g, 716.48 g.s, -34.2 g and 11933.5 g.s, respectively. Corresponding values for unpeeled samples obtained 403.38 g, 2081.2 g, -3175.32 g.s, -118 g and 35757.22 g.s, respectively.


2019 ◽  
Vol 35 (3) ◽  
pp. 389-397
Author(s):  
Ajit K Mahapatra ◽  
Daniel E Ekefre ◽  
Hema L Degala ◽  
Somashekhar M Punnuri ◽  
Thomas H Terrill

Abstract. The bioactivity of Sericea lespedeza (SL) condensed tannins, including suppression of gastrointestinal nematodes, has contributed to a surge in interest of use of this plant in livestock production systems worldwide. Physical and thermal properties of SL seeds (AU Grazer™ and Serala cultivars) were determined as a function of moisture content for a moisture range from 8.57% to 26.53%, wet basis. The length, width, arithmetic mean diameter, geometric mean diameter, surface area, volume, and 1000 seed mass of both the seeds increased as the moisture content increased. Bulk density and unit density decreased as the moisture content increased. The sphericity of SL seeds decreased with increasing moisture content. Serala seeds were characterized by a higher aspect ratio than AU Grazer™. The angle of repose of SL seeds increased, while the compressibility index decreased in the moisture range. For color, the L* values of SL seeds decreased while the a* values increased with the increase in moisture content. A decrease in the b* values was insignificant. The thermal conductivity and specific heat of SL seeds decreased, whereas, thermal diffusivity increased as the moisture content of SL seeds increased. Serala seeds were characterized by higher values of thermal conductivity and volumetric specific heat than AU Grazer™. Keywords: Engineering properties, Moisture content, Physical properties, Seeds, Thermal properties.


Author(s):  
Mansoureh Pourjafar

<p>Some physical properties of Iranian Jujube fruit were evaluated. Jujube fruit samples mean values of length, width, thickness were found as 18.005mm, 14.96 mm, 15.26 mm. Arithmetic mean diameter, geometric mean diameter were found as 16.08mm, 16.01 respectively and surface area, Sphericity, porosity, mass, volume, bulk density and true density were also found as: 805.65 mm<sup>2</sup> ,89%, 77.2%, 1.45gr, 2.61 cm<sup>3</sup> , 0.23gr cm<sup>-3</sup>, 0.55gr cm<sup>-3</sup> respectively. Projected area perpendicular to length, width and thickness were measured as, 152.03 mm<sup>2</sup>, 220.02 mm<sup>2</sup>, 271.4mm<sup>2</sup> respectively. With comparison between friction coefficients on different surface for Jujube fruit. The results showed that the static coefficient of friction was more than dynamic coefficient of friction.The tests done on the galvanized steel surface, plywood and glass surface. The most coefficient of friction was found on the plywood surface and the least coefficient of friction was measured on the glass surface.</p>


2020 ◽  
Vol 44 (4) ◽  
pp. 609-620
Author(s):  
MA Hoque

The knowledge of the physical characteristics of particles is essential for the designer of agricultural machines. The study was aimed to determine physical and engineering properties of three selected varieties of groundnuts cultivated in Bangladesh such as Dhaka-1, BARI Badam-8 and BARI Badam-9 at safe storage moisture content of 7.5%. One hundred groundnut pods and kernels were randomly selected and the length, width and thickness were measured using a vernier caliper. The geometric mean diameter, sphericity, aspect ratio was calculated using standard formula and measured values. Bulk density, true density, mass and porosity were found through direct weighing and water displacement. Angle of repose of pods and kernels was also measured on wood, glass and mild steel sheet surfaces. BARI Badam-9 had the highest pod geometric mean diameter and BARI Badam-8 had the highest kernel geometric mean diameter. Sphericity of groundnut pod was the highest for Dhaka-1. Surface area of pod and aspect ratio of both pod and kernel were the highest in BARI Badam-9. Porosity of the pod was the least for BARI Badam-8. Angle of repose of kernel varied on wood and glass. But it was similar for kernel on MS sheet for the varieties. This result will be useful to design and develop groundnut processing equipment for different varietal variability Bangladesh J. Agril. Res. 44(4): 609-620, December 2019


2015 ◽  
Vol 154 (2) ◽  
pp. 223-241 ◽  
Author(s):  
D. L. GILTRAP ◽  
A. J. R. GODFREY

SUMMARYChamber sampling is a common method for measuring nitrous oxide (N2O) emissions from agricultural soils. However, for grazed pastures, the patchy nature of urine deposition results in very high levels of spatial variability in N2O emissions. In the present study, the behaviour of the sample mean was examined by simulating a large number (9999) of random N2O chamber samples under different assumptions regarding the underlying N2O distribution. Using sample sizes of up to 100 chambers, the Central Limit Theorem did not apply. The distribution of the sample mean was always right-skewed with a standard deviation varying between 12·5 and 135% of the true mean. However, the arithmetic mean was an unbiased estimator and the mean of the sample mean distribution was close to the true mean of the simulated N2O distribution. The properties of the sample mean distribution (variance, skewness) were affected significantly by the assumed distribution of the emission factor, but not by distribution of the urine patch concentration. The geometric mean was also investigated as a potential alternative estimator. However, although its distribution had lower variance, it was also biased. Two methods for bias correcting the mean were investigated. These methods reduced the bias, but at the cost of increasing the variance. Neither of the bias-corrected estimators were consistently better than the arithmetic mean in terms of skewness and variance. To improve the estimation of N2O emissions from a grazed pasture using chambers, techniques need to be developed to identify urine patch and non-urine patch areas before sampling.


Sign in / Sign up

Export Citation Format

Share Document