George Washington Carver National Monument plant community report: 2004–2020

2021 ◽  
Author(s):  
Sherry Leis ◽  
Mary Short

The Heartland Inventory and Monitoring Network completed its sixth year of plant community monitoring at George Washington Carver National Monument in 2020. Plant community monitoring focused on the restored prairie community. We visited seven monitoring sites in each of the six years and collected data on plant species and ground cover. In this report we also included two environmental factors—precipitation and recent fire history—to better understand the vegetation community status and trends. Since 2000, precipitation has often been below the 30-year normal. Moreover, annual precipitation was below normal for all but one of the monitoring years. We found that the drought in 2012 stood out as possibly influencing plant guild cover. Although prairies are adapted to drought, further analyses might reveal more about the role of climate change in these vegetation communities. Fire management also plays an important role in shaping plant communities. Prescribed fire occurrence became more frequent and consistent through the period of plant monitoring. Additional treatments, including herbicide and mowing, also supported a healthy prairie. The prairie plant community continues to be moderately diverse despite recent increases in tree seedlings and small saplings. Species richness in 2012 was different than in two of the six years monitored. However, diversity indices (H′ and J′) were very similar across monitored years. Species guilds (also known as functional groups) exhibited differing patterns. Woody plants, long a concern at the monument, were statistically similar across years. In 2020, grass-like species increased, but grass species appeared to have declined below prior years. Grass cover in 2004 was statistically different (greater) than in 2008 and 2020. The reasons for this are not clear. Of particular interest to the park is the status of two sumac species (Rhus glabra and R. copallinum). These species were in decline as a result of focused management actions since 2012. However, the blackberry species (Rubus spp.) seemed to be replacing the sumac in some sites. In 2020, nonnative species richness and cover were below peak levels, demonstrating management actions have been successful in maintaining low levels. The vegetation monitoring protocol experienced some changes between 2004 and 2020. A key difference was a shift from sampling twice during the field season to sampling only once in a monitoring year. Although a decline in species richness was anticipated, that pattern was not apparent. However, the abundance of grasses may have been affected by the shift in seasonality of sampling. Additionally, we remedied inconsistencies in how tree regeneration was recorded (stem tallies in some cases and cover estimates in other cases). We converted all cover data to stem tallies and density was calculated to be consistent with the protocol. The monument has had success with coordinating fire management and invasive species management. A decrease in sumac across the prairie is evidence of this success. These actions will continue to be important for maintaining the prairie in good condition into the future.

2014 ◽  
Vol 20 (3) ◽  
pp. 237 ◽  
Author(s):  
Peter J Berney ◽  
G. Glenn Wilson ◽  
Darren S. Ryder ◽  
R.D.B Whalley ◽  
John Duggin ◽  
...  

We examined the effects of grazing exclusion over a period of 14 years on the species richness and community composition of three plant communities with different dominant species and water regimes in the Gwydir Wetlands in eastern Australia. Responses to grazing exclusion varied among the three plant communities, and were most likely to be evident during dry periods rather than during periods of inundation. In frequently flooded plant communities, there was an increase in phytomass following exclusion of domestic livestock, but changes in plant community composition and species richness due to livestock exclusion varied depending on the morphological attributes of the dominant plant species. In a plant community where tall sedge species were dominant, livestock exclusion further increased their dominance and overall species richness declined. In contrast, where a prostrate grass species such as Paspalum distichum was dominant, species richness increased following livestock exclusion, due to an increase in the abundance of taller dicotyledon species. However, livestock exclusion in a community where flooding was less frequent and native grass species have been largely replaced with the introduced species Phyla canescens, resulted in no significant changes to phytomass, species richness or community composition among the grazing exclusion treatments over time. Our results indicate responses to exclusion of domestic livestock are dependent upon the dominant species within the plant community and will likely vary over time with the extent of wetland inundation. Grazing exclusion alone, without increased flooding, is unlikely to restore floristically degraded floodplain plant communities.


2021 ◽  
Author(s):  
David Peitz ◽  
Naomi Reibold

Breeding bird surveys were initiated on George Washington Carver National Monument, Missouri, in 2008 to assess temporal changes in the species composition and abundance of birds on the park and to improve our understanding of relationships between breeding birds and their habitat and the effects of management actions, such as invasive plant species control and tree thinning, on bird populations. Birds were sampled using point counts with 70 variable circular plots located on a systematic grid of 100 x 100-m cells (originating from a random start point). All birds seen or heard on a plot during a 5-min sampling period were recorded. In the 13 years since initiating our breeding bird surveys on the park, birds were surveyed on as many of the 70 variable circular plots as possible each year, resulting in 520 cumulative plot visits. Surveys have yielded records for 100 different species of birds. Ninety-seven of the species recorded are classified as permanent or summer residents to the area, two are classified as transients in the area, and one as a winter resident to the area. Six breeding species recorded are considered species of conservation concern for the Central Hardwoods Bird Conservation Region, the bird conservation region in which George Washington Carver National Monument is located. Of the 97 breeding species recorded, ten species in grassland habitat and six in woodland habitat occurred in numbers large enough to calculate annual abundances with some degree of confidence. Trends in abundance were classified as uncertain for most species, which means that there were no significant increases or decreases, but it is not certain that trends were < 5% per year. The Northern Cardinal (Cardinalis cardinalis) in woodland habitat was stable. The Eastern Meadowlark (Sturnella magna) in grassland habitat was in moderate decline, and the Northern Bobwhite (Colinus virginianus) in grassland habitat was in steep decline. Comparing population trends (i.e., changes in population size over time) on the park with regional trends for the Central Hardwoods Bird Conservation Region suggests that the bird community at George Washington Carver National Monument is faring similarly to that of the region as a whole. Trends in the park’s popula-tions of Field Sparrow (Spizella pusilla) and Indigo Bunting (Passerina cyanea) in grassland habitat and Carolina Wren (Thryothorus ludovicianus) in woodland habitat were uncertain, whereas they declined significantly in the larger region, which could be a result of management on George Washington Carver National Monument. Red-bellied Woodpecker (Melanerpes carolinus) population trends, while uncertain in grassland habitat on the park, increased significantly in the region. The Red-bellied Woodpecker utilizes trees for foraging, which are sparse in the grassland habitat on the park. Declining diversity and richness values suggest that park habitat is declining in its ability to meet the requirements of many of the park’s breeding bird species. This decline in species richness could reflect habitat management practices, but it could also reflect the influences of larger-scale factors such as weather or climatic conditions on vegetation. Therefore, continued monitoring of birds and their habitats on George Washington Carver National Monument as management and weather and climatic conditions change is essential for park management.


1995 ◽  
Vol 32 (5-6) ◽  
pp. 227-233 ◽  
Author(s):  
F. J. Venter ◽  
A. R. Deacon

Six major rivers flow through the Kruger National Park (KNP). All these rivers originate outside and to the west of the KNP and are highly utilized. They are crucially important for the conservation of the unique natural environments of the KNP. The human population growth in the Lowveld during the past two decades brought with it the rapid expansion of irrigation farming, exotic afforestation and land grazed by domestic stock, as well as the establishment of large towns, mines, dams and industries. Along with these developments came overgrazing, erosion, over-utilization and pollution of rivers, as well as clearing of indigenous forests from large areas outside the borders of the KNP. Over-utilization of the rivers which ultimately flow through the KNP poses one of the most serious challenges to the KNP's management. This paper gives the background to the development in the catchments and highlights the problems which these have caused for the KNP. Management actions which have been taken as well as their results are discussed and solutions to certain problems proposed. Three rivers, namely the Letaba, Olifants and Sabie are respectively described as examples of an over-utilized river, a polluted river and a river which is still in a fairly good condition.


2017 ◽  
Vol 7 (23) ◽  
pp. 10233-10242 ◽  
Author(s):  
Jacob Nabe-Nielsen ◽  
Signe Normand ◽  
Francis K. C. Hui ◽  
Laerke Stewart ◽  
Christian Bay ◽  
...  

Biologia ◽  
2014 ◽  
Vol 69 (2) ◽  
Author(s):  
Lenka Hajzlerová ◽  
Jiří Reif

AbstractImpacts of invasive alien plant species are threatening biodiversity worldwide and thus it is important to assess their effects on particular groups of organisms. However, such impacts were studied mostly in case of plant or invertebrate communities and our understanding the response of vertebrate species to plant invasions remains incomplete. To improve our knowledge in this respect, we studied bird communities in riparian vegetation along the rivers with different levels of Reynoutria spp. invasion in the Czech Republic. These findings will be interesting for basic ecology enhancing our knowledge of consequences of plant invasions, as well as for conservation practice. We surveyed understory bird species in 26 vegetation blocks along parts of three rivers running from the Beskydy Mountains in spring 2011. We used principal component analysis to assess vegetation structure of particular blocks and the first axis ordinated the blocks according to the degree of invasion by Reynoutria spp. Using generalized linear mixed-effects models we found that counts of Motacilla cinerea, Cinclus cinclus and Sylvia borin, as well as the total bird species richness, significantly decreased with increasing degree of Reynoutria spp. invasion, while Acrocephalus palustris showed the opposite pattern. These results suggest that Reynoutria spp. impacts negatively on the species strictly bond with river banks and habitats specialists, whereas habitat generalist species like Sylvia atricapilla were not affected. Preference of Acrocephalus palustris for Reynoutria spp. corroborates affinity of this species to large invasive herbs observed also in other studies. Our study showed that Reynoutria spp. invasion can reduce species richness of understory birds in riparian communities. Although the distribution of this plant species is still quite limited in central Europe, our results suggest that its more widespread occurrence could potentially threat some river bank bird species. Therefore, we urge for development of management actions that will act counter the Reynoutria spp. invasion.


Biologia ◽  
2011 ◽  
Vol 66 (5) ◽  
Author(s):  
Jiří Dostálek ◽  
Tomáš Frantík

AbstractThe extreme habitats of dry grasslands are suitable for investigations of the response of vegetation to local climate changes. The impact of weather variability on the dynamics of a plant community in a dry grassland was studied. Correlations were found between different functional groups of species and individual species and weather variability. During a 9-year study in five nature reserves in Prague (Czech Republic), the following responses of dry grassland vegetation to weather conditions were observed: (i) wetter conditions, especially in the winter, affected the dominance and species richness of perennial grass species and the decline of rosette plants; (ii) the year-to-year higher temperatures in the winter produced a decline in the dominance of short graminoids and creeping forbs; (iii) spring drought adversely impacted the overall abundance, especially the abundance of dicotyledonous species, and the species richness. However, these relationships may be manifested in different ways in different locations, and in some cases the vegetation of different locations may respond to weather conditions in opposite manners.


2011 ◽  
Vol 20 (8) ◽  
pp. 909 ◽  
Author(s):  
T. D. Penman ◽  
O. Price ◽  
R. A. Bradstock

Wildfire can result in significant economic costs with inquiries following such events often recommending an increase in management effort to reduce the risk of future losses. Currently, there are no objective frameworks in which to assess the relative merits of management actions or the synergistic way in which the various combinations may act. We examine the value of Bayes Nets as a method for assessing the risk reduction from fire management practices using a case study from a forested landscape. Specifically, we consider the relative reduction in wildfire risk from investing in prescribed burning, initial or rapid attack and suppression. The Bayes Net was developed using existing datasets, a process model and expert opinion. We compared the results of the models with the recorded fire data for an 11-year period from 1997 to 2000 with the model successfully duplicating these data. Initial attack and suppression effort had the greatest effect on the distribution of the fire sizes for a season. Bayes Nets provide a holistic model for considering the effect of multiple fire management methods on the risk of wildfires. The methods could be further advanced by including the costs of management and conducting a formal decision analysis.


Sign in / Sign up

Export Citation Format

Share Document