scholarly journals Analisis Kandungan Mineral Pasir Pantai Bajul Mati Kabupaten Malang Menggunakan XRF dan XRD

2020 ◽  
Vol 5 (2) ◽  
pp. 58
Author(s):  
Sumari Sumari ◽  
Yana Fajar Prakasa ◽  
Muhammad Roy Asrori ◽  
Dinar Rachmadika Baharintasari

Mineral exploration in Indonesia has not been evenly distributed, so a study with title analysis of the sand mineral content of Bajul Mati Malang Regency was carried out using XRF and XRD. The aims of this study to determine the percentage of mineral that containing in the sand of Bajul Mati beach in Malang Regency. The instruments used XRF and XRD where the samples were placed in a sample holder and irradiated with X-rays then. The result of analysis of mineral content and metal oxide in Bajul Mati beach sand showed that the beach sand of Bajul Mati has the big potential to be used as a base for making nanomaterials. The results of analysis of XRF showed that the content of SiO2 was 46.7% and the results of analysis of XRD showed that the SiO2 mineral has the quartz phased. Bajul Mati beach sand has the potential to be a source of mineral material.

2021 ◽  
Vol 9 (6) ◽  
pp. 63
Author(s):  
Payam Farzad ◽  
Ted Lundgren ◽  
Adel Al-Asfour ◽  
Lars Andersson ◽  
Christer Dahlin

This study was undertaken to investigate the integration of titanium micro-implants installed in conjunction with previously dentin-grafted areas and to study the morphological appearance, mineral content, and healing pattern of xenogenic EDTA-conditioned dentin blocks and granules grafted to cavities in the tibial bone of rabbits. Demineralized and non-demineralized dentin blocks and granules from human premolars were implanted into cavities prepared on the lateral aspects of the tibias of rabbits. After a healing period of six months, micro-implants were installed at each surgical site. Histological examinations were carried out after 24 weeks. Characterization of the EDTA-conditioned dentin blocks was performed by means of light microscopy, dental X-rays, scanning electron microscopy, and energy dispersive X-ray analysis (EDX). No implants were found to be integrated in direct contact with the dentin particles or blocks. On the EDTA-conditioned dentin surface, the organic marker elements C and N dominated, as revealed by EDX. The hydroxyapatite constituents Ca and P were almost absent on the dentin surface. No statistically significant difference was observed between the EDTA-conditioned and non-demineralized dentin, as revealed by BIC and BA. The bone-inductive capacity of the dentin material seemed limited, although demineralization by means of EDTA indicated higher BIC and BA values in conjunction with the installed implants in the area. A 12 h EDTA treatment did not fully decalcify the grafts, as revealed by X-ray analysis.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexandra Guerreiro ◽  
Nicholas Chatterton ◽  
Eleanor M. Crabb ◽  
Jon P. Golding

Abstract Background A wide range of nanoparticles (NPs), composed of different elements and their compounds, are being developed by several groups as possible radiosensitisers, with some already in clinical trials. However, no systematic experimental survey of the clinical X-ray radiosensitising potential of different element nanoparticles has been made. Here, we directly compare the irradiation-induced (10 Gy of 6-MV X-ray photon) production of hydroxyl radicals, superoxide anion radicals and singlet oxygen in aqueous solutions of the following metal oxide nanoparticles: Al2O3, SiO2, Sc2O3, TiO2, V2O5, Cr2O3, MnO2, Fe3O4, CoO, NiO, CuO, ZnO, ZrO2, MoO3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb4O7, Dy2O3, Er2O3 and HfO2. We also examine DNA damage due to these NPs in unirradiated and irradiated conditions. Results Without any X-rays, several NPs produced more radicals than water alone. Thus, V2O5 NPs produced around 5-times more hydroxyl radicals and superoxide radicals. MnO2 NPs produced around 10-times more superoxide anions and Tb4O7 produced around 3-times more singlet oxygen. Lanthanides produce fewer hydroxyl radicals than water. Following irradiation, V2O5 NPs produced nearly 10-times more hydroxyl radicals than water. Changes in radical concentrations were determined by subtracting unirradiated values from irradiated values. These were then compared with irradiation-induced changes in water only. Irradiation-specific increases in hydroxyl radical were seen with most NPs, but these were only significantly above the values of water for V2O5, while the Lanthanides showed irradiation-specific decreases in hydroxyl radical, compared to water. Only TiO2 showed a trend of irradiation-specific increase in superoxides, while V2O5, MnO2, CoO, CuO, MoO3 and Tb4O7 all demonstrated significant irradiation-specific decreases in superoxide, compared to water. No irradiation-specific increases in singlet oxygen were seen, but V2O5, NiO, CuO, MoO3 and the lanthanides demonstrated irradiation-specific decreases in singlet oxygen, compared to water. MoO3 and CuO produced DNA damage in the absence of radiation, while the highest irradiation-specific DNA damage was observed with CuO. In contrast, MnO2, Fe3O4 and CoO were slightly protective against irradiation-induced DNA damage. Conclusions Beyond identifying promising metal oxide NP radiosensitisers and radioprotectors, our broad comparisons reveal unexpected differences that suggest the surface chemistry of NP radiosensitisers is an important criterion for their success.


1974 ◽  
Vol 18 ◽  
pp. 545-556 ◽  
Author(s):  
Luther E. Preuss ◽  
Dennis G. Piper ◽  
Claudius Bugenis

AbstractCurrent methods of measuring bone mineral content In vitro are either inaccurate or measure density in non-intuitive units. A recently developed system overcomes these difficulties by utilizing the Compton scattering of photons from bone. Two sources of monoenergetic photons with related properties are required. The range includes energetic x-rays and low energy gamma rays. This study analyzes a number of the possible nuclide source combinations, and reports experimental results accomplished with a 153Gd-170-Tm combination. In vitro measurement of the density of ox bones by this method agreed with Archimedean measurements within three percent.


2020 ◽  
Vol 8 (D) ◽  
pp. 94-99
Author(s):  
Ali Abdelnabi ◽  
Mermen Kamal Hamza ◽  
Ola M. El-Borady ◽  
Tamer M. Hamdy

BACKGROUND: Coral calcium is a new biomimetic product and dietary supplement which consists mainly of alkaline calcium carbonate. AIM: The aim of the current study is to compare the remineralization effect of coral calcium in different formulations and application methods. METHODS: A total of 35 extracted molars was collected, examined, and sectioned to obtain 70 sound enamel discs, all specimens were examined for calcium mineral content using energy dispersive analysis of X-rays (EDAX) coupled with scanning electron microscope. Hydroxyapatite (HA) nanoparticles were synthesized through wet chemical precipitation approach and characterized by transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) analysis. Teeth specimens were subjected to demineralization, and mineral content was measured, specimens were divided into ten groups according to the remineralizing agent used, where Groups 1–3 used 10, 20, and 30 weight % (wt.%) coral calcium gel, respectively, Groups 4–6 used 10, 20, and 30 wt.% coral calcium and nanohydroxyapatite mix gel, and Groups 7–9 used 10, 20, and 30 wt.% coral calcium with argon laser activation and Group 10 (control group) without a remineralizing agent. All groups were re-examined by EDAX after remineralization. RESULTS: The TEM and FT-IR analysis confirmed the formation of rod shape HA in nanoparticles size range. All groups showed a statistically significant decrease in calcium level after demineralization, all groups showed a statistically significant increase in calcium content after remineralization except for the control group. Moreover, Groups 2 and 8 showed the highest increase in calcium level after remineralization. CONCLUSION: Coral calcium showed a significant remineralizing effect on carious enamel (demineralization) with an optimum concentration of 20 wt.%.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Dayong He ◽  
Nan Zhang ◽  
Aamir Iqbal ◽  
Yuying Ma ◽  
Xiaofeng Lu ◽  
...  

AbstractLightweight shielding materials that can protect devices against undesirable multispectral electromagnetic waves are critical in electronic, medical, military, and aerospace applications. However, the existing shielding materials are heavyweight and work only in a narrow frequency-range. In this work, we developed metal–metal oxide Ag-WO3 decorated polymeric nanofiber hybrid membranes with versatile multispectral electromagnetic shielding abilities for practical applications. The Ag-WO3 hybrid provides multiple functions, such as excellent metallic conductivity provided by silver, high photoelectric effect and low thermal conductivity arising from the high atomic number in WO3, and strong infrared energy absorbing capability caused by a designed Schottky barrier interface between Ag and WO3. Additionally, the nanofibrous hybrid membrane structure provides high surface area, good air permeability, and robust mechanical strength and durability. These highly conductive, lightweight, ultrathin, and flexible membranes exhibit efficient microwave electromagnetic interference shielding of 92.3 dB at a thickness of ~42 μm in 8–26.5 GHz frequency range, 0.75–0.5 emissivity for near- to far-field infrared bands, and 32.03% attenuation for X-rays of 30 keV at 0.24 mm thickness, indicating their potential for shielding against large-scale multispectral electromagnetic waves from low-frequency microwaves to high-frequency X-rays.


2020 ◽  
Vol 27 (5) ◽  
pp. 1167-1171
Author(s):  
Takayuki Harano ◽  
Yasuo Takeichi ◽  
Takuji Ohigashi ◽  
Daisuke Shindo ◽  
Eiji Nemoto ◽  
...  

In this study, an azimuthal-rotation sample holder compatible with scanning transmission X-ray microscopy was developed. This holder exhibits improvement in the accuracy of rotation angles and reduces the displacement of the rotation axes during azimuthal rotation by using a crossed roller bearing. To evaluate the performance of the holder, the authors investigated the dependence of the optical density around the C K-edge absorption of π-orbital-oriented domains in natural spherical graphite on the rotational angle by using linearly horizontally and vertically polarized undulator radiation. Based on the dependence of the optical density ratio between C 1s → π* and 1s → σ* excitation on the polarization angle of the X-rays, the average two-dimensional orientation angle of the π orbital in each position in a natural spherical graphite sample was visualized.


2005 ◽  
Vol 495-497 ◽  
pp. 131-136 ◽  
Author(s):  
Heinz Günter Brokmeier ◽  
Brigitte Weiss ◽  
Sang Bong Yi ◽  
Wenhai Ye Yi ◽  
Klaus Dieter Liss ◽  
...  

A new method to investigate thin wires has been tested, which is based on a special sample holder and on a high energy X-rays. Due to the high penetration power of high energy Xrays quantitative texture data will be obtained without any additional corrections such as constant volume correction and absorption correction. The measurements have been carried out at the high energy beam line BW5 at HASYLAB – DESY (Hamburg). In order to overcome grain statistics problems on the investigated Cu-wire of 122µm thickness a special scanning routine together with the sample preparation allows to average over a wire length between 1mm and up to 240 mm.


1984 ◽  
Vol 28 ◽  
pp. 75-83 ◽  
Author(s):  
W. Michaelis ◽  
J. Knoth ◽  
A. Prange ◽  
H. Schwenke

AbstractThe principle to utilize total reflection of the primary X-rays in fluorescence analysis is known since a lot of years. Nevertheless, analytical chemistry did not profit from the inherent advantages of the method for a long time. The main reason for this failure was the lack of instruments which were easy to use in practice. A few years ago, however, the development of a proper mechanical design and of adapted sample preparation techniques led to commercially available spectrometers which throughout fulfill the demands for routine applications. Since then the utilization of Total-Reflection X-Ray Fluorescence Analysis (TXRF) has increased rapidly. The scope of work is meanwhile widespread over environmental research and monitoring, mineralogy, mineral exploration, oceanography, biology, medicine and biochemistry. Accordingly, numerous matrices have been handled.


2015 ◽  
Vol 14 (51) ◽  
pp. 3333-3339 ◽  
Author(s):  
A. Souza Gusmão Thaisa ◽  
P. De Gusmão Rennan ◽  
De Sousa Severina ◽  
Eduardo R. Moreira Cavalcanti Mata Mário ◽  
Elita M. Duarte Maria ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document