METABOLOMIC ASSESSMENT OF TETRACYCLINE-IMPACTED PATHWAYS WITHIN VETIVER GRASS (Chrysopogon zizanoides [L. nash]) IN HYDROPONIC SYSTEMS

2018 ◽  
Author(s):  
Andrew Kennedy
HortScience ◽  
1993 ◽  
Vol 28 (10) ◽  
pp. 981-984 ◽  
Author(s):  
Jay Frick ◽  
Cary A. Mitchell

2-[N-morpholino] ethanesulfonic acid (MES) buffer or Amberlite DP-1 (cation-exchange resin beads) were used to stabilize substrate pH of passive-wicking, solid-matrix hydroponic systems in which small canopies of Brassica napus L. (CrGC 5-2, genome: ACaacc) were grown to maturity. Two concentrations of MES (5 or 10 m m) were included in Hoagland 1 nutrient solution. Alternatively, resin beads were incorporated into the 2 vermiculite: 1 perlite (v/v) growth medium at 6% or 12% of total substrate volume. Both strategies stabilized pH without toxic side effects on plants. Average seed yield rates for all four pH stabilization treatments (13.3 to 16.9 g·m-2·day-1) were about double that of the control (8.2 g·m-2·day-1), for which there was no attempt to buffer substrate pH. Both the highest canopy seed yield rate (16.9 g·m-2·day-1) and the highest shoot harvest index (19.5%) occurred with the 6% resin bead treatment, even though the 10 mm MES and 12% bead treatments maintained pH within the narrowest limits. The pH stabilization methods tested did not significantly affect seed oil and protein contents.


2009 ◽  
Vol 34 (6) ◽  
pp. 6595-6615
Author(s):  
E. Koriesh ◽  
A. Khalil ◽  
Y. Abd El-Fatah

Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 68
Author(s):  
Yi-Ju Wang ◽  
Amanda J. Deering ◽  
Hye-Ji Kim

Our previous study reported that fresh produce grown in aquaponic and hydroponic systems can pose potential food safety hazards due to an accidental introduction of contaminated fish and cross-contamination between the systems. In this study, we examined the effects of plant species and age on the likelihood and level of internalization of Shiga toxin-producing Escherichia coli (STEC) in aquaponic and hydroponic systems. Four plant species, basil (Ocimum basilicum L. cv. Genovese), cilantro (Coriandrum Sativum L.), lettuce (Lactuca sativa cv. Cherokee), and kale (Brassica oleracea var. sabellica), received root damage treatment as seedlings before transplanting or mature plants at three weeks after transplanting by cutting off 1-cm tips of one-third of the roots. Enrichments and selective media were used for the isolation, and presumptive positive colonies were confirmed by PCR for the presence of stx1 gene in plant tissues, recirculating water, and fish feces collected at four weeks after transplanting. In hydroponic systems, STEC was found neither in the solution nor in the roots and leaves of all four plant species, possibly through improved sanitation and hygiene practices. However, consistent with our previous findings, STEC was found in the water, on the plant roots, and in the fish feces in aquaponic systems, even after thorough sanitation prior to the study. Regardless of plant age, STEC was internalized in the roots of all plant species when the roots were damaged, but there was no difference in the degree of internalization with STEC among plant species. STEC was present in the leaves only when seedlings received root damage treatment and were grown to maturity, indicating that root damage allows STEC to internalize in the roots within a week, but a longer period is required for STEC to internalize into the leaves. We concluded that root damage on seedlings can cause the internalization of E. coli O157:H7 in the edible parts of leafy vegetables and herbs in soilless production systems.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 74
Author(s):  
Abhishek RoyChowdhury ◽  
Pallabi Mukherjee ◽  
Saumik Panja ◽  
Rupali Datta ◽  
Christos Christodoulatos ◽  
...  

The use of insensitive munitions such as 3-nitro-1,2,4-triazol-5-one (NTO) is rapidly increasing and is expected to replace conventional munitions in the near future. Various NTO treatment technologies are being developed for the treatment of wastewater from industrial munition facilities. This is the first study to explore the potential phytoremediation of industrial NTO-wastewater using vetiver grass (Chrysopogon zizanioides L.). Here, we present evidence that vetiver can effectively remove NTO from wastewater, and also translocated NTO from root to shoot. NTO was phytotoxic and resulted in a loss of plant biomass and chlorophyll. The metabolomic analysis showed significant differences between treated and control samples, with the upregulation of specific pathways such as glycerophosphate metabolism and amino acid metabolism, providing a glimpse into the stress alleviation strategy of vetiver. One of the mechanisms of NTO stress reduction was the excretion of solid crystals. Scanning electron microscopy (SEM), electrospray ionization mass spectrometry (ESI-MS), and Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the presence of NTO crystals in the plant exudates. Further characterization of the exudates is in progress to ascertain the purity of these crystals, and if vetiver could be used for phytomining NTO from industrial wastewater.


2018 ◽  
Vol 8 (20) ◽  
Author(s):  
John Vincent R. Pleto ◽  
Mark Dondi M. Arboleda ◽  
Jessica F. Simbahan ◽  
Veronica P. Migo

Background. Water quality in the Marilao-Meycauayan-Obando river system (MMORS) of Bulacan, the Philippines, is of great concern due to the pollution load from local industries. The river system is currently used as a source of water for the aquaculture industry in Bulacan. Objectives. In order to address organic and heavy metal pollution, several remediation strategies were tested in aquaculture ponds along the river system. Strategies such as phytoremediation (vetiver grass pontoons), application of probiotics and zeolite (with filtration as pre-treatment) were utilized in ponds to decrease or remove toxic pollutants in water and sediments. Methods. Two sites were chosen as the pilot remediation sites – ponds in Barangay Nagbalon, Marilao and Barangay Liputan, Meycauayan, Bulacan. Pond bottom preparation was done to improve the condition of the pond bottom sediments before stocking by adding zeolite. Physicochemical parameters of water such as dissolved oxygen (DO), temperature, pH, salinity, ammonia, phosphate, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) were monitored throughout the culture period. Heavy metals in sediments and fish were monitored. Fish parameters such as average body weight and feed conversion ratio were determined. Results. The DO levels were below recommended levels in the morning and reached a supersaturated level in the afternoon. Ammonia and COD levels were above recommended limits. A decreasing trend was observed for ammonia levels in treatment ponds. In terms of the growth of milkfish, the pond with probiotics showed the highest growth and better feed conversion ratio in Nagbalon and in the phytoremediation pond in Liputan. Percentage survival of milkfish was much higher at Liputan. Copper, chromium, lead and manganese were detected in pond sediments. After application of zeolite, there was a decrease in lead levels throughout the culture period. Conclusions. The different remediation studies were compared in terms of cost, effectivity and application and phytoremediation (vetiver grass pontoons) was determined to be the most cost-effective remediation strategy. Competing Interests. The authors declare no competing financial interests.


Sign in / Sign up

Export Citation Format

Share Document