scholarly journals Economic viability of shale gas production in the Marcellus Shale; indicated by production rates, costs and current natural gas prices

2012 ◽  
Author(s):  
Ryan J. Duman
SPE Journal ◽  
2016 ◽  
Vol 22 (01) ◽  
pp. 235-243 ◽  
Author(s):  
Wei Tian ◽  
Xingru Wu ◽  
Tong Shen ◽  
Zhenyu Zhang ◽  
Sumeer Kalra

Summary Hydraulic fracturing has been applied as an effective method to increase gas production from shale formations; however, this method has also raised concerns about its adverse impacts on environment. For example, in the Marcellus shale formation, some measured radon-gas concentrations exceeded the safe standard. Therefore, it is important to quantitatively evaluate radon concentration from fractured wells. However, existing researches have not successfully conducted a systematic and predictive study on the relationship between shale gas production and radon concentration at the wellhead of a hydraulically fractured well. To address this issue and quantitatively determine the radon concentration, we present the mechanisms of radon-gas generation and releasing, and conducted numerical simulations on its transport process in the subsurface formation system. The concentration of radon in produced gas is related with the original sources where the natural gas is extracted. Radon, generated from the radium alpha decay process, is trapped in pore spaces before the reservoir development. With the fluid flowing through the subsurface network, released radon will move to surface with the produced streams such as natural gas and flowback water. Our study shows that the radon concentration at wellhead could be significant. Influential factors such as natural-fracture-network properties, formation petrophysical parameters, and fracture dimension are investigated with sensitivity studies through numerical simulations. Analysis results suggest that radon wellhead concentration is strongly related with production rate. Thus, careful production design and protection are necessary to reduce radon hazard regarding the public and environmental impact.


Fuels ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 286-303
Author(s):  
Vuong Van Pham ◽  
Ebrahim Fathi ◽  
Fatemeh Belyadi

The success of machine learning (ML) techniques implemented in different industries heavily rely on operator expertise and domain knowledge, which is used in manually choosing an algorithm and setting up the specific algorithm parameters for a problem. Due to the manual nature of model selection and parameter tuning, it is impossible to quantify or evaluate the quality of this manual process, which in turn limits the ability to perform comparison studies between different algorithms. In this study, we propose a new hybrid approach for developing machine learning workflows to help automated algorithm selection and hyperparameter optimization. The proposed approach provides a robust, reproducible, and unbiased workflow that can be quantified and validated using different scoring metrics. We have used the most common workflows implemented in the application of artificial intelligence (AI) and ML in engineering problems including grid/random search, Bayesian search and optimization, genetic programming, and compared that with our new hybrid approach that includes the integration of Tree-based Pipeline Optimization Tool (TPOT) and Bayesian optimization. The performance of each workflow is quantified using different scoring metrics such as Pearson correlation (i.e., R2 correlation) and Mean Square Error (i.e., MSE). For this purpose, actual field data obtained from 1567 gas wells in Marcellus Shale, with 121 features from reservoir, drilling, completion, stimulation, and operation is tested using different proposed workflows. A proposed new hybrid workflow is then used to evaluate the type well used for evaluation of Marcellus shale gas production. In conclusion, our automated hybrid approach showed significant improvement in comparison to other proposed workflows using both scoring matrices. The new hybrid approach provides a practical tool that supports the automated model and hyperparameter selection, which is tested using real field data that can be implemented in solving different engineering problems using artificial intelligence and machine learning. The new hybrid model is tested in a real field and compared with conventional type wells developed by field engineers. It is found that the type well of the field is very close to P50 predictions of the field, which shows great success in the completion design of the field performed by field engineers. It also shows that the field average production could have been improved by 8% if shorter cluster spacing and higher proppant loading per cluster were used during the frac jobs.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Xiaoji Shang ◽  
J. G. Wang ◽  
Zhizhen Zhang

The governing equations of a two-phase flow have a strong nonlinear term due to the interactions between gas and water such as capillary pressure, water saturation, and gas solubility. This nonlinearity is usually ignored or approximated in order to obtain analytical solutions. The impact of such ignorance on the accuracy of solutions has not been clear so far. This study seeks analytical solutions without ignoring this nonlinear term. Firstly, a nonlinear mathematical model is developed for the two-phase flow of gas and water during shale gas production. This model also considers the effects of gas solubility in water. Then, iterative analytical solutions for pore pressures and production rates of gas and water are derived by the combination of travelling wave and variational iteration methods. Thirdly, the convergence and accuracy of the solutions are checked through history matching of two sets of gas production data: a China shale gas reservoir and a horizontal Barnett shale well. Finally, the effects of the nonlinear term, shale gas solubility, and entry capillary pressure on the shale gas production rate are investigated. It is found that these iterative analytical solutions can be convergent within 2-3 iterations. The solutions can well describe the production rates of both gas and water. The nonlinear term can significantly affect the forecast of shale gas production in both the short term and the long term. Entry capillary pressure and shale gas solubility in water can also affect shale gas production rates of shale gas and water. These analytical solutions can be used for the fast calculation of the production rates of both shale gas and water in the two-phase flow stage.


Significance US natural gas prices have surged over the past six weeks thanks to falling supply, strong demand from the power sector and rising exports. The uptick in prices has provided a glimmer of hope to gas producers in the United States, hard hit by a prolonged slump in prices. Impacts Declining gas production and rising demand will mean increased pipeline imports from Canada over the coming months. Mexico will pay higher prices for US natural gas imports as the Henry Hub benchmark, potentially hitting demand. US producers that have more gas-producing assets in their portfolio will benefit from rising prices.


Significance This drag on the economy stems mainly from the poor performance of the natural gas sector, as investment in new projects has been inadequate to compensate for the decline in output from mature fields. Impacts Natural gas might be a driver of growth, despite limited scope to increase oil production due to depleted reserves. Development of Algeria’s abundant reserves of shale gas may face strong local opposition. Increased gas production could facilitate progress on long-stalled plans to expand fertiliser and petrochemical industries.


2013 ◽  
Vol 53 (1) ◽  
pp. 313 ◽  
Author(s):  
K. Ameed R. Ghori

Production of shale gas in the US has changed its position from a gas importer to a potential gas exporter. This has stimulated exploration for shale-gas resources in WA. The search started with Woodada Deep–1 (2010) and Arrowsmith–2 (2011) in the Perth Basin to evaluate the shale-gas potential of the Permian Carynginia Formation and the Triassic Kockatea Shale, and Nicolay–1 (2011) in the Canning Basin to evaluate the shale-gas potential of the Ordovician Goldwyer Formation. Estimated total shale-gas potential for these formations is about 288 trillion cubic feet (Tcf). Other petroleum source rocks include the Devonian Gogo and Lower Carboniferous Laurel formations of the Canning Basin, the Lower Permian Wooramel and Byro groups of the onshore Carnarvon Basin, and the Neoproterozoic shales of the Officer Basin. The Canning and Perth basins are producing petroleum, whereas the onshore Carnarvon and Officer basins are not producing, but they have indications for petroleum source rocks, generation, and migration from geochemistry data. Exploration is at a very early stage, and more work is needed to estimate the shale-gas potential of all source rocks and to verify estimated resources. Exploration for shale gas in WA will benefit from new drilling and production techniques and technologies developed during the past 15 years in the US, where more than 102,000 successful gas production wells have been drilled. WA shale-gas plays are stratigraphically and geochemically comparable to producing plays in the Upper Ordovician Utica Shale, Middle Devonian Marcellus Shale and Upper Devonian Bakken Formation, Upper Mississippian Barnett Shale, Upper Jurassic Haynesville-Bossier formations, and Upper Cretaceous Eagle Ford Shale of the US. WA is vastly under-explored and emerging self-sourcing shale plays have revived onshore exploration in the Canning, Carnarvon, and Perth basins.


2013 ◽  
Vol 53 (2) ◽  
pp. 499
Author(s):  
Lisa Henneberry ◽  
Steven Harris ◽  
Anthony Way

This extended abstract analyses the combined disruptive effects of the shale gas boom, the global gas glut, and the worldwide economic crisis on international gas markets. These factors are considered in three major regions of the world: In the competitive and liquid US gas market, increased domestic shale gas production prompted a dramatic decline in US gas prices and ultimately eliminated virtually all demand for new supplies of imported LNG. In Europe, continuing liberalisation in the EU's natural gas end-user and wholesale markets, the growing liquidity of trading hubs across Europe, and the introduction of cheaper spot-gas have fundamentally changed the traditional oil-indexed gas and LNG contracting models. In Asia, changes in buyer sensitivities to supply security and the development of new sources of supply have prompted discounting against traditional oil-based benchmarks and an increase in short-term or more flexible LNG purchases. This extended abstract explores the combined effects of these developing trends in each major region together with the typical responses of buyers and sellers in each market. These effects and reactions introduce associated complexities in this changing-price environment. The authors also explore potential changes in the traditional gas and LNG contracting model and the evolution of related risk allocations, which contracting parties often rely on.


Sign in / Sign up

Export Citation Format

Share Document